@phdthesis{Devine2013, author = {Devine, Eric}, title = {Increased removal of protein bound uremic toxins through reversible modification of the ionic strength during hemodiafiltration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A large number of metabolic waste products accumulate in the blood of patients with renal failure. Since these solutes have deleterious effects on the biological functions, they are called uremic toxins and have been classified in three groups: 1) small water soluble solutes (MW < 500 Da), 2) small solutes with known protein binding (MW < 500 Da), and 3) middle molecules (500 Da < MW < 60 kDa). Protein bound uremic toxins are poorly removed by conventional hemodialysis treatments because of their high protein binding and high distribution volume. The prototypical protein bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are associated with the progression of chronic kidney disease, cardiovascular outcomes, and mortality of patients on maintenance hemodialysis. Furthermore, these two compounds are bound to albumin, the main plasma protein, via electrostatic and/or Van-der-Waals forces. The aim of the present thesis was to develop a dialysis strategy, based on the reversible modification of the ionic strength in the blood stream by increasing the sodium chloride (NaCl) concentration, in order to enhance the removal of protein bound substances, such as IS and pCS, with the ultimate goal to improve clinical patient outcomes. Enhancing the NaCl concentration ([NaCl]) in both human normal and uremic plasma was efficient to reduce the protein bound fraction of both IS and pCS by reducing their binding affinity to albumin. Increasing the ionic strength was feasible during modified pre-dilution hemodiafiltration (HDF) by increasing the [NaCl] in the substitution fluid. The NaCl excess was adequately removed within the hemodialyzer. This method was effective to increase the removal rate of both protein bound uremic toxins. Its ex vivo hemocompatibility, however, was limited by the osmotic shock induced by the high [NaCl] in the substituate. Therefore, modified pre-dilution HDF was further iterated by introducing a second serial cartridge, named the serial dialyzers (SDial) setup. This setting was validated for feasibility, hemocompatibility, and toxin removal efficiency. A better hemocompatibility at similar efficacy was obtained with the SDial setup compared with the modified pre-dilution HDF. Both methods were finally tested in an animal sheep model of dialysis to verify biocompatibility. Low hemolysis and no activation of both the complement and the coagulation systems were observed when increasing the [NaCl] in blood up to 0.45 and 0.60 M with the modified pre-dilution HDF and the SDial setup, respectively. In conclusion, the two dialysis methods developed to transitory enhance the ionic strength in blood demonstrated adequate biocompatibility and improved the removal of protein bound uremic toxins by decreasing their protein bound fraction. The concepts require follow-on clinical trials to assess their in vivo efficacy and their impact on long-term clinical outcomes.}, subject = {H{\"a}modiafiltration}, language = {en} } @article{BrandenburgKramannKoosetal.2013, author = {Brandenburg, Vincent M. and Kramann, Rafael and Koos, Ralf and Krueger, Thilo and Schurgers, Leon and M{\"u}hlenbruch, Georg and H{\"u}bner, Sinah and Gladziwa, Ulrich and Drechler, Christiane and Ketteler, Markus}, title = {Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study}, series = {BMC Nephrology}, volume = {14}, journal = {BMC Nephrology}, number = {219}, issn = {1471-2369}, doi = {10.1186/1471-2369-14-219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122070}, year = {2013}, abstract = {Background: Sclerostin is a Wnt pathway antagonist regulating osteoblast activity and bone turnover. Here, we assessed the potential association of sclerostin with the development of coronary artery (CAC) and aortic valve calcifications (AVC) in haemodialysis (HD) patients. Methods: We conducted a cross-sectional multi-slice computed tomography (MS-CT) scanning study in 67 chronic HD patients (59.4 +/- 14.8 yrs) for measurement of CAC and AVC. We tested established biomarkers as well as serum sclerostin (ELISA) regarding their association to the presence of calcification. Fifty-four adults without relevant renal disease served as controls for serum sclerostin levels. Additionally, sclerostin expression in explanted aortic valves from 15 dialysis patients was analysed ex vivo by immunohistochemistry and mRNA quantification (Qt-RT-PCR). Results: CAC (Agatston score > 100) and any AVC were present in 65\% and in 40\% of the MS-CT patient group, respectively. Serum sclerostin levels (1.53 +/- 0.81 vs 0.76 +/- 0.31 ng/mL, p < 0.001) were significantly elevated in HD compared to controls and more so in HD patients with AVC versus those without AVC (1.78 +/- 0.84 vs 1.35 +/- 0.73 ng/mL, p = 0.02). Multivariable regression analysis for AVC revealed significant associations with higher serum sclerostin. Ex vivo analysis of uraemic calcified aortic valves (n = 10) revealed a strong sclerostin expression very close to calcified regions (no sclerostin staining in non-calcified valves). Correspondingly, we observed a highly significant upregulation of sclerostin mRNA in calcified valves compared to non-calcified control valves. Conclusion: We found a strong association of sclerostin with calcifying aortic heart valve disease in haemodialysis patients. Sclerostin is locally produced in aortic valve tissue adjacent to areas of calcification.}, language = {en} }