@article{DrechslerKolleritzMeinitzeretal.2013, author = {Drechsler, Christiane and Kolleritz, Barbara and Meinitzer, Andreas and M{\"a}rz, Winfried and Ritz, Eberhard and K{\"o}nig, Paul and Neyer, Ulrich and Pilz, Stefan and Wanner, Christoph and Kronenberg, Florian}, title = {Homoarginine and Progression of Chronic Kidney Disease: Results from the Mild to Moderate Kidney Disease Study}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, organization = {MMKD Study Group}, doi = {10.1371/journal.pone.0063560}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130979}, pages = {e63560}, year = {2013}, abstract = {Background: Homoarginine is an amino acid derivative mainly synthesized in the kidney. It is suggested to increase nitric oxide availability, enhance endothelial function and to protect against cardiovascular diseases. We aimed to investigate the relation between homoarginine, kidney function and progression of chronic kidney disease (CKD). Methods: We measured plasma homoarginine concentrations in baseline samples of the Mild to Moderate Kidney Disease (MMKD) Study, a prospective cohort study of 227 patients with CKD in Europe. Homoarginine concentrations were available in 182 of the baseline samples and in 139 of the prospectively-followed patients. We correlated homoarginine concentrations to parameters of kidney function. The association between homoarginine and progression of CKD was assessed during a follow-up of up to seven years (median 4.45 years, interquartile range 2.54-5.19) using Cox regression analysis. Progression of CKD was defined as doubling of baseline serum creatinine and/or end-stage renal disease. Results: Study participants were at baseline on average 47 \(\pm\)13 years old and 65\% were male. Mean \(\pm\) standard deviation of homoarginine concentrations were \(2.5 \pm 1.1 \mu mol/L\) and concentrations were incrementally lower at lower levels of GFR with mean concentrations of \(2.90 \pm 1.02 \mu mol/L\) (GFR. 90 ml/min), \(2.64 \pm 1.06 \mu mol/L\) (GFR 60-90 ml/min), \(2.52 \pm 1.24 \mu mol/L\) (GFR 30-60 ml/min) and \(2.05 \pm 0.78 \mu mol/L\) (GFR, 30 ml/min), respectively (p = 0.002). The age-and sex-adjusted risk to reach the renal endpoint was significantly higher by 62\% with each decrease by one standard deviation (\(1.1 \mu mol/L\)) of homoarginine (HR 1.62, 95\% CI 1.16-2.27, p = 0.005). This association was independent of proteinuria (HR 1.56, 95\% CI 1.11-2.20, p = 0.01), and was slightly attenuated when adjusting for GFR (HR 1.40 (95\% CI 0.98-1.98, p = 0.06). Conclusions: Homoarginine concentrations are directly correlated with kidney function and are significantly associated with the progression of CKD. Low homoarginine concentrations might be an early indicator of kidney failure and a potential target for the prevention of disease progression which needs further investigations.}, language = {en} } @phdthesis{Devine2013, author = {Devine, Eric}, title = {Increased removal of protein bound uremic toxins through reversible modification of the ionic strength during hemodiafiltration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A large number of metabolic waste products accumulate in the blood of patients with renal failure. Since these solutes have deleterious effects on the biological functions, they are called uremic toxins and have been classified in three groups: 1) small water soluble solutes (MW < 500 Da), 2) small solutes with known protein binding (MW < 500 Da), and 3) middle molecules (500 Da < MW < 60 kDa). Protein bound uremic toxins are poorly removed by conventional hemodialysis treatments because of their high protein binding and high distribution volume. The prototypical protein bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are associated with the progression of chronic kidney disease, cardiovascular outcomes, and mortality of patients on maintenance hemodialysis. Furthermore, these two compounds are bound to albumin, the main plasma protein, via electrostatic and/or Van-der-Waals forces. The aim of the present thesis was to develop a dialysis strategy, based on the reversible modification of the ionic strength in the blood stream by increasing the sodium chloride (NaCl) concentration, in order to enhance the removal of protein bound substances, such as IS and pCS, with the ultimate goal to improve clinical patient outcomes. Enhancing the NaCl concentration ([NaCl]) in both human normal and uremic plasma was efficient to reduce the protein bound fraction of both IS and pCS by reducing their binding affinity to albumin. Increasing the ionic strength was feasible during modified pre-dilution hemodiafiltration (HDF) by increasing the [NaCl] in the substitution fluid. The NaCl excess was adequately removed within the hemodialyzer. This method was effective to increase the removal rate of both protein bound uremic toxins. Its ex vivo hemocompatibility, however, was limited by the osmotic shock induced by the high [NaCl] in the substituate. Therefore, modified pre-dilution HDF was further iterated by introducing a second serial cartridge, named the serial dialyzers (SDial) setup. This setting was validated for feasibility, hemocompatibility, and toxin removal efficiency. A better hemocompatibility at similar efficacy was obtained with the SDial setup compared with the modified pre-dilution HDF. Both methods were finally tested in an animal sheep model of dialysis to verify biocompatibility. Low hemolysis and no activation of both the complement and the coagulation systems were observed when increasing the [NaCl] in blood up to 0.45 and 0.60 M with the modified pre-dilution HDF and the SDial setup, respectively. In conclusion, the two dialysis methods developed to transitory enhance the ionic strength in blood demonstrated adequate biocompatibility and improved the removal of protein bound uremic toxins by decreasing their protein bound fraction. The concepts require follow-on clinical trials to assess their in vivo efficacy and their impact on long-term clinical outcomes.}, subject = {H{\"a}modiafiltration}, language = {en} } @article{deZeeuwAkizawaAgarwaletal.2013, author = {de Zeeuw, Dick and Akizawa, Tadao and Agarwal, Rajiv and Audhya, Paul and Bakris, George L. and Chin, Melanie and Krauth, Melissa and Lambers Heerspink, Hiddo J. and Meyer, Colin J. and McMurray, John J. and Parving, Hans-Henrik and Pergola, Pablo E. and Remuzzi, Giuseppe and Toto, Robert D. and Vaziri, Nosratola D. and Wanner, Christoph and Warnock, David G. and Wittes, Janet and Chertow, Glenn M.}, title = {Rationale and Trial Design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: The Occurrence of Renal Events (BEACON)}, series = {American Journal of Nephrology}, volume = {37}, journal = {American Journal of Nephrology}, number = {3}, issn = {0250-8095}, doi = {10.1159/000346948}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196832}, pages = {212-222}, year = {2013}, abstract = {Background: Chronic kidney disease (CKD) associated with type 2 diabetes mellitus constitutes a global epidemic complicated by considerable renal and cardiovascular morbidity and mortality, despite the provision of inhibitors of the renin-angiotensin-aldosterone system (RAAS). Bardoxolone methyl, a synthetic triterpenoid that reduces oxidative stress and inflammation through Nrf2 activation and inhibition of NF-κB was previously shown to increase estimated glomerular filtration rate (eGFR) in patients with CKD associated with type 2 diabetes mellitus. To date, no antioxidant or anti-inflammatory therapy has proved successful at slowing the progression of CKD. Methods: Herein, we describe the design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: the Occurrence of Renal Events (BEACON) trial, a multinational, multicenter, double-blind, randomized, placebo-controlled Phase 3 trial designed to determine whether long-term administration of bardoxolone methyl (on a background of standard therapy, including RAAS inhibitors) safely reduces renal and cardiac morbidity and mortality. Results: The primary composite endpoint is time-to-first occurrence of either end-stage renal disease or cardiovascular death. Secondary endpoints include the change in eGFR and time to occurrence of cardiovascular events. Conclusion: BEACON will be the first event-driven trial to evaluate the effect of an oral antioxidant and anti-inflammatory drug in advanced CKD.}, language = {en} } @article{ChopraLangSalzmannetal.2013, author = {Chopra, Martin and Lang, Isabell and Salzmann, Steffen and Pachel, Christina and Kraus, Sabrina and B{\"a}uerlein, Carina A. and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Mattenheimer, Katharina and Ritz, Miriam and Schwinn, Stefanie and Graf, Carolin and Sch{\"a}fer, Viktoria and Frantz, Stefan and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97246}, year = {2013}, abstract = {Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5\%), TNF deficient (12.5\%), and TNFR2 deficient mice (22.2\%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.}, language = {en} } @article{BrandenburgKramannKoosetal.2013, author = {Brandenburg, Vincent M. and Kramann, Rafael and Koos, Ralf and Krueger, Thilo and Schurgers, Leon and M{\"u}hlenbruch, Georg and H{\"u}bner, Sinah and Gladziwa, Ulrich and Drechler, Christiane and Ketteler, Markus}, title = {Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study}, series = {BMC Nephrology}, volume = {14}, journal = {BMC Nephrology}, number = {219}, issn = {1471-2369}, doi = {10.1186/1471-2369-14-219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122070}, year = {2013}, abstract = {Background: Sclerostin is a Wnt pathway antagonist regulating osteoblast activity and bone turnover. Here, we assessed the potential association of sclerostin with the development of coronary artery (CAC) and aortic valve calcifications (AVC) in haemodialysis (HD) patients. Methods: We conducted a cross-sectional multi-slice computed tomography (MS-CT) scanning study in 67 chronic HD patients (59.4 +/- 14.8 yrs) for measurement of CAC and AVC. We tested established biomarkers as well as serum sclerostin (ELISA) regarding their association to the presence of calcification. Fifty-four adults without relevant renal disease served as controls for serum sclerostin levels. Additionally, sclerostin expression in explanted aortic valves from 15 dialysis patients was analysed ex vivo by immunohistochemistry and mRNA quantification (Qt-RT-PCR). Results: CAC (Agatston score > 100) and any AVC were present in 65\% and in 40\% of the MS-CT patient group, respectively. Serum sclerostin levels (1.53 +/- 0.81 vs 0.76 +/- 0.31 ng/mL, p < 0.001) were significantly elevated in HD compared to controls and more so in HD patients with AVC versus those without AVC (1.78 +/- 0.84 vs 1.35 +/- 0.73 ng/mL, p = 0.02). Multivariable regression analysis for AVC revealed significant associations with higher serum sclerostin. Ex vivo analysis of uraemic calcified aortic valves (n = 10) revealed a strong sclerostin expression very close to calcified regions (no sclerostin staining in non-calcified valves). Correspondingly, we observed a highly significant upregulation of sclerostin mRNA in calcified valves compared to non-calcified control valves. Conclusion: We found a strong association of sclerostin with calcifying aortic heart valve disease in haemodialysis patients. Sclerostin is locally produced in aortic valve tissue adjacent to areas of calcification.}, language = {en} } @article{BloemerPachelHofmannetal.2013, author = {Bl{\"o}mer, Nadja and Pachel, Christina and Hofmann, Urlich and Nordbeck, Peter and Bauer, Wolfgang and Mathes, Denise and Frey, Anna and Bayer, Barbara and Vogel, Benjamin and Ertl, Georg}, title = {5-Lipoxygenase facilitates healing after myocardial infarction}, series = {Basic Research in Cardiology}, volume = {108}, journal = {Basic Research in Cardiology}, number = {4}, doi = {10.1007/s00395-013-0367-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132602}, year = {2013}, abstract = {Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{-/-}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{-/-}\) bone marrow in 5-LOX\(^{-/-}\) animals), indicating that an altered function of 5-LOX\(^{-/-}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{-/-}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{-/-}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.}, language = {en} }