@article{VuralDopplerMeinl2018, author = {Vural, Atay and Doppler, Kathrin and Meinl, Edgar}, title = {Autoantibodies Against the Node of Ranvier in Seropositive Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic, Pathogenic, and Therapeutic Relevance}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2018.01029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233279}, year = {2018}, abstract = {Discovery of disease-associated autoantibodies has transformed the clinical management of a variety of neurological disorders. Detection of autoantibodies aids diagnosis and allows patient stratification resulting in treatment optimization. In the last years, a set of autoantibodies against proteins located at the node of Ranvier has been identified in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies target neurofascin, contactin1, or contactin-associated protein 1, and we propose to name CIDP patients with these antibodies collectively as seropositive. They have unique clinical characteristics that differ from seronegative CIDP. Moreover, there is compelling evidence that autoantibodies are relevant for the pathogenesis. In this article, we review the current knowledge on the characteristics of autoantibodies against the node of Ranvier proteins and their clinical relevance in CIDP. We start with a description of the structure of the node of Ranvier followed by a summary of assays used to identify seropositive patients; and then, we describe clinical features and characteristics linked to seropositivity. We review knowledge on the role of these autoantibodies for the pathogenesis with relevance for the emerging concept of nodopathy/paranodopathy and summarize the treatment implications.}, language = {en} } @article{SchurigHaeuslerGrittneretal.2019, author = {Schurig, Johannes and Haeusler, Karl Georg and Grittner, Ulrike and Nolte, Christian H. and Fiebach, Jochen B. and Audebert, Heinrich J. and Endres, Matthias and Rocco, Andrea}, title = {Frequency of Hemorrhage on Follow Up Imaging in Stroke Patients Treated With rt-PA Depending on Clinical Course}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, doi = {10.3389/fneur.2019.00368}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234947}, year = {2019}, abstract = {Background: According to current guidelines, stroke patients treated with rt-PA should undergo brain imaging to exclude intracerebral bleeding 24 h after thrombolysis, before the start of medical secondary prevention. However, the usefulness of routine follow-up imaging with regard to changes in therapeutic management in patients without neurological deterioration is unclear. We hypothesized that follow up brain imaging solely to exclude bleeding in patients who clinically improved after rt-PA application may not be necessary. Methods: Retrospective single-center analysis including stroke patients treated with rt-PA. Records were reviewed for hemorrhagic transformation one day after systemic thrombolysis and brain imaging-based changes in therapeutic management. Twenty-four hour after thrombolysis patients were divided into four groups: (1) increased NIHSS score; (2) unchanged NIHSS score; (3) improved NIHSS score and; (4) NIHSS score = 0. Results: Out of 188 patients (mean age 73 years, 100 female) receiving rt-PA, 32 (17\%) had imaging-proven hemorrhagic transformation including 11 (6\%) patients with parenchymal hemorrhage. Patients in group (1, 2) more often had hypertension (p = 0.015) and more often had parenchymal hemorrhage (9 vs. 4\%; p < 0.206) compared to group (3, 4) and imaging-based changes in therapeutic management were more frequent (19\% vs. 6\%; p = 0.007). Patients of group (3, 4) had no changes in therapeutic management in 94\% of the cases. Patients in group (4) had no hemorrhagic transformation in routine follow-up brain imaging. Conclusions: Frequency of hemorrhagic transformation in Routine follow-up brain imaging and consecutive changes in therapeutic management were different depending on clinical course measured by NHISS score.}, language = {en} } @article{GeranUeckerPruessetal.2019, author = {Geran, Rohat and Uecker, Florian C. and Pr{\"u}ss, Harald and Haeusler, Karl Georg and Paul, Friedemann and Ruprecht, Klemens and Harms, Lutz and Schmidt, Felix A.}, title = {Olfactory and Gustatory Dysfunction in Patients With Autoimmune Encephalitis}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, doi = {10.3389/fneur.2019.00480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232921}, year = {2019}, abstract = {Objective: To test the hypothesis that olfactory (OF) and gustatory function (GF) is disturbed in patients with autoimmune encephalitides (AE). Methods: The orthonasal OF was tested in 32 patients with AE and 32 age- and sex-matched healthy controls (HC) with the standardized Threshold Discrimination Identification (TDI) score. This validated olfactory testing method yields individual scores for olfactory threshold (T), odor discrimination (D), and identification (I), along with a composite TDI score. The GF was determined by the Taste Strip Test (TST). Results: Overall, 24/32 (75\%) of patients with AE, but none of 32 HC (p < 0.001) had olfactory dysfunction in TDI testing. The results of the threshold, discrimination and identification subtests were significantly reduced in patients with AE compared to HC (all p < 0.001). Assessed by TST, 5/19 (26.3\%) of patients with AE, but none of 19 HC presented a significant limitation in GF (p < 0.001). The TDI score was correlated with the subjective estimation of the olfactory capacity on a visual analog scale (VAS; rs = 0.475, p = 0.008). Neither age, sex, modified Rankin Scale nor disease duration were associated with the composite TDI score. Conclusions: This is the first study investigating OF and GF in AE patients. According to unblinded assessment, patients with AE have a reduced olfactory and gustatory capacity compared to HC, suggesting that olfactory and gustatory dysfunction are hitherto unrecognized symptoms in AE. Further studies with larger number of AE patients would be of interest to verify our results.}, language = {en} } @article{UllrichWeberPostetal.2018, author = {Ullrich, M and Weber, M and Post, A M and Popp, S and Grein, J and Zechner, M and Gonz{\´a}lez, H Guerrero and Kreis, A and Schmitt, A G and {\"U}ҫeyler, N and Lesch, K-P and Schuh, K}, title = {OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency}, series = {Molecular Psychiatry}, volume = {23}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2016.232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232096}, pages = {444-458}, year = {2018}, abstract = {Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2\% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.}, language = {en} } @article{SulzerCassidyHorgaetal.2018, author = {Sulzer, David and Cassidy, Clifford and Horga, Guillermo and Kang, Un Jung and Fahn, Stanley and Casella, Luigi and Pezzoli, Gianni and Langley, Jason and Hu, Xiaoping P. and Zucca, Fabio A. and Isaias, Ioannis U. and Zecca, Luigi}, title = {Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0047-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240207}, year = {2018}, abstract = {The diagnosis of Parkinson's disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM's avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.}, language = {en} } @article{OdinChaudhuriVolkmannetal.2018, author = {Odin, Per and Chaudhuri, K. Ray and Volkmann, Jens and Antonini, Angelo and Storch, Alexander and Dietrichs, Espen and Pirtošek, Zvezdan and Henriksen, Tove and Horne, Malcolm and Devos, David and Bergquist, Filip}, title = {Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson's disease}, series = {npj Parkinson's Disease}, volume = {4}, journal = {npj Parkinson's Disease}, doi = {10.1038/s41531-018-0051-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234435}, year = {2018}, abstract = {Motor aspects of Parkinson's disease, such as fluctuations and dyskinesia, can be reliably evaluated using a variety of "wearable" technologies, but practical guidance on objective measurement (OM) and the optimum use of these devices is lacking. Therefore, as a first step, a panel of movement disorder specialists met to provide guidance on how OM could be assessed and incorporated into clinical guidelines. A key aspect of the incorporation of OM into the management of Parkinson's disease (PD) is defining cutoff values that separate "controlled" from "uncontrolled" symptoms that can be modified by therapy and that relate to an outcome that is relevant to the person with PD (such as quality of life). Defining cutoffs by consensus, which can be subsequently tested and refined, is the first step to optimizing OM in the management of PD. OM should be used by all clinicians that treat people with PD but the least experienced may find the most value, but this requires guidance from experts to allow non-experts to apply guidelines. While evidence is gained for devices that produce OM, expert opinion is needed to supplement the evidence base.}, language = {en} } @article{LanghauserCasasDaoetal.2018, author = {Langhauser, Friederike and Casas, Ana I. and Dao, Vu-Thao-Vi and Guney, Emre and Menche, J{\"o}rg and Geuss, Eva and Kleikers, Pamela W. M. and L{\´o}pez, Manuela G. and Barab{\´a}si, Albert-L. and Kleinschnitz, Christoph and Schmidt, Harald H. H. W.}, title = {A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection}, series = {npj Systems Biology and Applications}, volume = {4}, journal = {npj Systems Biology and Applications}, doi = {10.1038/s41540-017-0039-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236381}, year = {2018}, abstract = {Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy.}, language = {en} } @phdthesis{Yabe2024, author = {Yabe, Marie}, title = {Untersuchung des Mental Rotation-Paradigmas bei Patienten mit fokaler Dystonie}, doi = {10.25972/OPUS-36392}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363927}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das mR-Paradigma beschreibt die F{\"a}higkeit Objekte gedanklich zu drehen und erfordert dabei komplexe neuronale Prozesse. Bisherige Studien konnten nicht kl{\"a}ren, ob es ein spezifisches Muster der Beeintr{\"a}chtigung im mR-Test bei fokalen Dystonien gibt. Die {\"u}bergeordnete Fragestellung der vorliegenden Arbeit war, ob eine verlangsamte Reaktion bei der mR von k{\"o}rperlichen Abbildungen einen stabilen Endoph{\"a}notyp fokaler Dystonien darstellt. Die Zielsetzung war die {\"U}berpr{\"u}fung der Hypothesen, 1) dass bisherige Ergebnisse, die eine verl{\"a}ngerte Reaktionszeit von CD-Patienten bei der mR von k{\"o}rperlichen Abbildungen aufzeigten, reproduzierbar sind und 2) dass eine erh{\"o}hte Reaktionszeit bei der mR von k{\"o}rperlichen Abbildungen auch bei Patienten mit BSP vorliegt. Um dabei die mR m{\"o}glichst spezifisch zu untersuchen, wurden folgende sekund{\"a}re Hypothesen formuliert: a) die kognitive Leistungsf{\"a}higkeit und b) das allgemeine Reaktionsverm{\"o}gen der Teilnehmer stellen potenzielle St{\"o}rfaktoren f{\"u}r die Reaktionszeit bei der mR-Aufgabe dar. Diese wurden neben der H{\"a}ndigkeit und der allgemeinen Geschicklichkeit systematisch erhoben. 23 CD-Patienten und 23 gesunde Kontrollpersonen sowie 21 BSP- und 19 HFS-Patienten wurden hinsichtlich Geschlechterverteilung, Alter und Bildungsstand verglichen. Zudem wurden H{\"a}ndigkeit, Fingergeschicklichkeit, allgemeine Reaktionszeit und kognitiver Status jedes Teilnehmers erhoben. Im mR-Test wurden Fotos von K{\"o}rperteilen (Hand, Fuß oder Kopf) und einem nicht-k{\"o}rperlichen Objekt (Auto) gezeigt, die in sechs verschiedene Winkelgrade um die eigene Achse in der Bildebene rotiert waren. Die Teilnehmer wurden gebeten, die Lateralit{\"a}t des dargestellten Bildes per Tastendruck anzugeben. Bewertet wurden sowohl Geschwindigkeit als auch Richtigkeit der Antworten. Im Vergleich zu gesunden Kontrollpersonen schnitten CD- und HFS-Patienten bei der mR der H{\"a}nde schlechter ab, w{\"a}hrend die BSP-Patienten vergleichbare Leistungen zeigten. Es bestand ein signifikanter Zusammenhang zwischen einer verl{\"a}ngerten mR-Reaktionszeit und reduzierten MoCA-Scores sowie einer erh{\"o}hten mR-Reaktionszeit und verl{\"a}ngerter allgemeiner Reaktionszeit. Nach Ausschluss der Patienten mit MCI zeigten CD-Patienten, nicht jedoch HFS-Patienten, im Vergleich zur gesunden Kontrollgruppe weiterhin verlangsamte Reaktionszeiten der H{\"a}nde. Die vorliegende Studie konnte die Frage, ob eine verlangsamte Reaktion bei der mR von k{\"o}rperlichen Abbildungen einen stabilen Endoph{\"a}notyp fokaler Dystonien darstellt, nicht sicher beantworten. Es stellte sich jedoch heraus, dass Kognition und allgemeine Reaktionszeit starke Einflussfaktoren bei der mR-Aufgabe sind. Dies wurde in den fr{\"u}heren Arbeiten nicht ber{\"u}cksichtigt und stellt daher ein neues und wichtiges Ergebnis dar. Die verlangsamte Reaktion bei der mR der H{\"a}nde bei CD-Patienten auch nach Ausschluss von Patienten mit MCI l{\"a}sst ein spezifisches Defizit der F{\"a}higkeit der mR vermuten. Das Vorliegen einer tiefergreifenden zugrundeliegenden Netzwerkst{\"o}rung, die sich auf die Leistung im mR-Test auswirkt, w{\"a}re dabei denkbar.}, language = {de} } @phdthesis{Weiss2024, author = {Weiß, Eva Maria}, title = {Einfluss von Makrophagen auf autophagische Vorg{\"a}nge in Schwann´schen Zellen unter den Bedingungen von Nervenl{\"a}sion und genetisch bedingter Neuropathie}, doi = {10.25972/OPUS-36967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369674}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Charcot-Marie-Tooth (CMT) Neuropathien stellen als h{\"a}ufigste erblich bedingte neurologische Erkrankungen eine Gruppe genetisch heterogener, chronisch progredienter peripherer Polyneuropathien dar. Die Lebensqualit{\"a}t der Patienten ist bei fehlender kurativer Therapieoption vor allem durch motorische und sensorische Defizite deutlich eingeschr{\"a}nkt. In verschiedenen Studien konnte die pathophysiologische Relevanz einer sekund{\"a}ren Entz{\"u}ndungsreaktion, insbesondere durch Makrophagen und Lymphozyten vermittelt, in Mausmodellen dreier CMT1 Subtypen (CMT1A, CMT1B, CMT1X) aufgezeigt werden. Auch in Folge einer L{\"a}sion peripherer Nerven ist eine akute Entz{\"u}ndungsreaktion von entscheidender Bedeutung, wobei sich bereits Gemeinsamkeiten zwischen der postl{\"a}sionalen Waller´schen Degeneration (WD) und CMT1 Neuropathien identifizieren ließen. W{\"a}hrend die aktive Beteiligung der Autophagie Schwann´scher Zellen (hier kurz SZ Autophagie genannt) an der Myelindegradation im Falle einer WD jedoch vielfach beschrieben wurde, ist {\"A}hnliches in CMT1 Neuropathien bisher nur unzureichend untersucht. Da in einer Studie in Cx32def Mausmodellen der CMT1X Erkrankung auch nach Reduktion endoneuraler Makrophagen anhaltende Demyelinisierung beobachtet werden konnte, sollte das Vorkommen von SZ Autophagie sowie deren m{\"o}gliche Beeinflussung durch Makrophagen in diesen Myelinmutanten untersucht werden. In der vorliegenden Arbeit wurden sowohl Wildtyp (Wt) M{\"a}use in ex vivo und in vivo Modellen einer WD als auch Cx32def Myelinmutanten zweier Altersstufen (4 und 12 Monate) mit einem niedermolekularen CSF1-Rezeptor-Inhibitor (CSF1RI) zur Reduktion endoneuraler Makrophagen behandelt, wobei sich vergleichende histochemische bzw. immunhistochemische Analysen peripherer Nerven behandelter und unbehandelter Tiere anschlossen. Im Rahmen der Etablierung immunhistochemischer Methodik zeigte sich hierbei unter den kontrollierten Bedingungen einer ex vivo Ischiasnervenkultur eine vermehrte Aktivierung der SZ Autophagie in behandelten Wt M{\"a}usen. Auch 4 Monate alte behandelte Cx32def Tiere wiesen, verglichen mit unbehandelten Myelinmutanten bzw. Wt M{\"a}usen derselben Altersstufe, eine vermehrte autophagische Aktivit{\"a}t in SZ auf. Diese scheint sich jedoch im weiteren Verlauf der Erkrankung zu reduzieren, da im Falle der 12 Monate alten Cx32def Modelltiere weniger autophagisch aktive SZ Profile bzw. kaum Unterschiede zwischen behandelten und unbehandelten Tieren beobachtet werden konnten. Die Ergebnisse lassen somit eine m{\"o}gliche aktive Beteiligung von SZ Autophagie insbesondere in der Pathophysiologie der fr{\"u}hen Phase einer CMT1X Erkrankung sowie deren Beeinflussung durch endoneurale Makrophagen vermuten. Dies sollte vornehmlich in der Entwicklung von Therapiestrategien der CMT1X bedacht werden, da sich eine fr{\"u}he Reduktion pathophysiologisch relevanter endoneuraler Makrophagen somit auch nachteilig auf die Myelinintegrit{\"a}t auswirken k{\"o}nnte.}, subject = {Schwann-Zelle}, language = {de} } @article{DopplerBrockmannSedghietal.2018, author = {Doppler, Kathrin and Brockmann, Kathrin and Sedghi, Annahita and Wurster, Isabel and Volkmann, Jens and Oertel, Wolfgang H. and Sommer, Claudia}, title = {Dermal phospho-alpha-synuclein deposition in patients with Parkinson's disease and mutation of the glucocerebrosidase gene}, series = {Frontiers in Neurology}, volume = {9}, journal = {Frontiers in Neurology}, doi = {10.3389/fneur.2018.01094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222828}, year = {2018}, abstract = {Heterozygous mutations in the glucocerebrosidase gene (GBA1) represent the most common genetic risk factor for Parkinson's disease (PD) and are histopathologically associated with a widespread load of alpha-synuclein in the brain. Therefore, PD patients with GBA1 mutations are a cohort of high interest for clinical trials on disease-modifying therapies targeting alpha-synuclein. There is evidence that detection of phospho-alpha-synuclein (p-syn) in dermal nerve fibers might be a biomarker for the histopathological identification of PD patients even at premotor or very early stages of disease. It is so far unknown whether dermal p-syn deposition can also be found in PD patients with GBA1 mutations and may serve as a biomarker for PD in these patients. Skin biopsies of 10 PD patients with different GBA1 mutations (six N3705, three E326K, one L444P) were analyzed by double-immunofluorescence labeling with anti-p-syn and anti-protein gene product 9.5 (PGP9.5, axonal marker) to detect intraaxonal p-syn deposition. Four biopsy sites (distal, proximal leg, paravertebral Th10, and C7) per patient were studied. P-syn was found in six patients (three N370S, three E326K). P-syn deposition was mainly detected in autonomic nerve fibers, but also in somatosensory fibers and was not restricted to a certain GBA1 mutation. In summary, dermal p-syn in PD patients with GBA1 mutations seems to offer a similar distribution and frequency as observed in patients without a known mutation. Skin biopsy may be suitable to study p-syn deposition in these patients or even to identify premotor patients with GBA1 mutations.}, language = {en} } @article{BolzoniEspostiMarcheseetal.2018, author = {Bolzoni, Francesco and Esposti, Roberto and Marchese, Silvia M. and Pozzi, Nicol{\´o} G. and Ramirez-Pasos, Uri E. and Isaias, Ioannis U. and Cavallari, Paolo}, title = {Disrupt of intra-limb APA pattern in parkinsonian patients performing index-finger flexion}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369245}, year = {2018}, abstract = {Voluntary movements induce postural perturbations which are counteracted by anticipatory postural adjustments (APAs). These actions are known to build up long fixation chains toward available support points (inter-limb APAs), so as to grant whole body equilibrium. Moreover, recent studies highlighted that APAs also build-up short fixation chains, within the same limb where a distal segment is moved (intra-limb APAs), aimed at stabilizing the proximal segments. The neural structures generating intra-limb APAs still need investigations; the present study aims to compare focal movement kinematics and intra-limb APA latencies and pattern between healthy subjects and parkinsonian patients, assuming the latter as a model of basal ganglia dysfunction. Intra-limb APAs that stabilize the arm when the index-finger is briskly flexed were recorded in 13 parkinsonian patients and in 10 age-matched healthy subjects. Index-finger movement was smaller in parkinsonian patients vs. healthy subjects (p = 0.01) and more delayed with respect to the onset of the prime mover flexor digitorum superficialis (FDS, p < 0.0001). In agreement with the literature, in all healthy subjects the FDS activation was preceded by an inhibitory intra-limb APA in biceps brachii (BB) and anterior deltoid (AD), and almost simultaneous to an excitatory intra-limb APA in triceps brachii (TB). In parkinsonian patients, no significant differences were found for TB and AD intra-limb APA timings, however only four patients showed an inhibitory intra-limb APA in BB, while other four did not show any BB intra-limb APAs and five actually developed a BB excitation. The frequency of occurrence of normal sign, lacking, and inverted BB APAs was different in healthy vs. parkinsonian participants (p = 0.0016). The observed alterations in index-finger kinematics and intra-limb APA pattern in parkinsonian patients suggest that basal ganglia, in addition to shaping the focal movement, may also contribute to intra-limb APA control.}, language = {en} } @article{BohmannKurkaduMesnildeRochemontetal.2019, author = {Bohmann, Ferdinand O. and Kurka, Natalia and du Mesnil de Rochemont, Richard and Gruber, Katharina and Guenther, Joachim and Rostek, Peter and Rai, Heike and Zickler, Philipp and Ertl, Michael and Berlis, Ansgar and Poli, Sven and Mengel, Annerose and Ringleb, Peter and Nagel, Simon and Pfaff, Johannes and Wollenweber, Frank A. and Kellert, Lars and Herzberg, Moriz and Koehler, Luzie and Haeusler, Karl Georg and Alegiani, Anna and Schubert, Charlotte and Brekenfeld, Caspar and Doppler, Christopher E. J. and Onur, Oezguer A. and Kabbasch, Christoph and Manser, Tanja and Pfeilschifter, Waltraud}, title = {Simulation-based training of the rapid evaluation and management of acute stroke (STREAM) — a prospective single-arm multicenter trial}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2019.00969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369239}, year = {2019}, abstract = {Introduction: Acute stroke care delivered by interdisciplinary teams is time-sensitive. Simulation-based team training is a promising tool to improve team performance in medical operations. It has the potential to improve process times, team communication, patient safety, and staff satisfaction. We aim to assess whether a multi-level approach consisting of a stringent workflow revision based on peer-to-peer review and 2-3 one-day in situ simulation trainings can improve acute stroke care processing times in high volume neurocenters within a 6 months period. Methods and Analysis: The trial is being carried out in a pre-test-post-test design at 7 tertiary care university hospital neurocenters in Germany. The intervention is directed at the interdisciplinary multiprofessional stroke teams. Before and after the intervention, process times of all direct-to-center stroke patients receiving IV thrombolysis (IVT) and/or endovascular therapy (EVT) will be recorded. The primary outcome measure will be the "door-to-needle" time of all consecutive stroke patients directly admitted to the neurocenters who receive IVT. Secondary outcome measures will be intervention-related process times of the fraction of patients undergoing EVT and effects on team communication, perceived patient safety, and staff satisfaction via a staff questionnaire. Interventions: We are applying a multi-level intervention in cooperation with three "STREAM multipliers" from each center. First step is a central meeting of the multipliers at the sponsor's institution with the purposes of algorithm review in a peer-to-peer process that is recorded in a protocol and an introduction to the principles of simulation training and debriefing as well as crew resource management and team communication. Thereafter, the multipliers cooperate with the stroke team trainers from the sponsor's institution to plan and execute 2-3 one-day simulation courses in situ in the emergency department and CT room of the trial centers whereupon they receive teaching materials to perpetuate the trainings. Clinical Trial Registration: STREAM is a registered trial at https://clinicaltrials.gov/ct2/show/NCT03228251.}, language = {en} } @article{RolfesRuckDavidetal.2022, author = {Rolfes, Leoni and Ruck, Tobias and David, Christina and Mencl, Stine and Bock, Stefanie and Schmidt, Mariella and Strecker, Jan-Kolja and Pfeuffer, Steffen and Mecklenbeck, Andreas-Schulte and Gross, Catharina and Gliem, Michael and Minnerup, Jens and Schuhmann, Michael K. and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Natural Killer Cells Are Present in Rag1\(^{-/-}\) Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke}, series = {Translational Stroke Research}, volume = {13}, journal = {Translational Stroke Research}, number = {1}, issn = {1868-4483}, doi = {10.1007/s12975-021-00923-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308924}, pages = {197-211}, year = {2022}, abstract = {Rag1\(^{-/-}\) mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1\(^{-/-}\) mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1\(^{null}\)IL2rg\(^{null}\) (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1\(^{-/-}\) and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1\(^{-/-}\) NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1\(^{-/-}\) were comparable in number and function to those in WT mice. Rag1\(^{-/-}\) mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1-/- controls. Our results indicate that NK cells from Rag1-/- mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.}, language = {en} } @article{EstradaKrebbersVossetal.2018, author = {Estrada, Veronica and Krebbers, Julia and Voss, Christian and Brazda, Nicole and Blazyca, Heinrich and Illgen, Jennifer and Seide, Klaus and J{\"u}rgens, Christian and M{\"u}ller, J{\"o}rg and Martini, Rudolf and Trieu, Hoc Khiem and M{\"u}ller, Hans Werner}, title = {Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, doi = {10.1038/s42003-018-0210-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227357}, year = {2018}, abstract = {Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.}, language = {en} } @article{HiewEibeckNguemenietal.2023, author = {Hiew, Shawn and Eibeck, Leila and Nguemeni, Carine and Zeller, Daniel}, title = {The influence of age and physical activity on locomotor adaptation}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {9}, issn = {2076-3425}, doi = {10.3390/brainsci13091266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362478}, year = {2023}, abstract = {Background: Aging increases individual susceptibility to falls and injuries, suggesting poorer adaptation of balance responses to perturbation during locomotion, which can be measured with the locomotor adaptation task (LAT). However, it is unclear how aging and lifestyle factors affect these responses during walking. Hence, the present study investigates the relationship between balance and lifestyle factors during the LAT in healthy individuals across the adult lifespan using a correlational design. Methods: Thirty participants aged 20-78 years performed an LAT on a split-belt treadmill (SBT). We evaluated the magnitude and rate of adaptation and deadaptation during the LAT. Participants reported their lifelong physical and cognitive activity. Results: Age positively correlated with gait-line length asymmetry at the late post-adaptation phase (p = 0.007). These age-related effects were mediated by recent physical activity levels (p = 0.040). Conclusion: Our results confirm that locomotor adaptive responses are preserved in aging, but the ability to deadapt newly learnt balance responses is compromised with age. Physical activity mediates these age-related effects. Therefore, gait symmetry post-adaptation could effectively measure the risk of falling, and maintaining physical activity could protect against declines in balance.}, language = {en} } @article{OdorferVolkmann2023, author = {Odorfer, Thorsten M. and Volkmann, Jens}, title = {Deep brain stimulation for focal or segmental craniocervical dystonia in patients who have failed botulinum neurotoxin therapy - a narrative review of the literature}, series = {Toxins}, volume = {15}, journal = {Toxins}, number = {10}, issn = {2072-6651}, doi = {10.3390/toxins15100606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357707}, year = {2023}, abstract = {(1) Background: The first-line treatment for patients with focal or segmental dystonia with a craniocervical distribution is still the intramuscular injection of botulinum neurotoxin (BoNT). However, some patients experience primary or secondary treatment failure from this potential immunogenic therapy. Deep brain stimulation (DBS) may then be used as a backup strategy in this situation. (2) Methods: Here, we reviewed the current study literature to answer a specific question regarding the efficacy and safety of the use of DBS, particularly for cervical dystonia (CD) and Meige syndrome (MS) in patients with documented treatment failure under BoNT. (3) Results: There are only two studies with the highest level of evidence in this area. Despite this clear limitation, in the context of the narrowly defined research question of this paper, it is possible to report 161 patients with CD or MS who were included in studies that were able to show a statistically significant reduction in dystonic symptoms using DBS. Safety and tolerability data appeared adequate. However, much of the information is based on retrospective observations. (4) Conclusions: The evidence base in this area is in need of further scientific investigation. Most importantly, more randomized, controlled and double-blind trials are needed, possibly including a head-to-head comparison of DBS and BoNT.}, language = {en} } @article{SteinhardtCejkaChenetal.2024, author = {Steinhardt, Maximilian J. and Cejka, Vladimir and Chen, Mengmeng and B{\"a}uerlein, Sabrina and Sch{\"a}fer, Julia and Adrah, Ali and Ihne-Schubert, Sandra M. and Papagianni, Aikaterini and Kort{\"u}m, K. Martin and Morbach, Caroline and St{\"o}rk, Stefan}, title = {Safety and tolerability of SGLT2 inhibitors in cardiac amyloidosis — a clinical feasibility study}, series = {Journal of Clinical Medicine}, volume = {13}, journal = {Journal of Clinical Medicine}, number = {1}, issn = {2077-0383}, doi = {10.3390/jcm13010283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-356024}, year = {2024}, abstract = {Sodium-glucose transport protein 2 inhibitors (SGLT2i) slow the progression of renal dysfunction and improve the prognosis of patients with heart failure. Amyloidosis constitutes an important subgroup for which evidence is lacking. Amyloidotic fibrils originating from misfolded transthyretin and light chains are the causal agents in ATTR and AL amyloidosis. In these most frequent subtypes, cardiac involvement is the most common organ manifestation. Because cardiac and renal function frequently deteriorate over time, even under best available treatment, SGLT2i emerge as a promising treatment option due to their reno- and cardioprotective properties. We retrospectively analyzed patients with cardiac amyloidosis, who received either dapagliflozin or empagliflozin. Out of 79 patients, 5.1\% had urinary tract infections; 2 stopped SGLT2i therapy; and 2.5\% died unrelated to the intake of SGLT2i. No genital mycotic infections were observed. As expected, a slight drop in the glomerular filtration rate was noted, while the NYHA functional status, cardiac and hepatic function, as well as the 6 min walk distance remained stable over time. These data provide a rationale for the use of SGLT2i in patients with amyloidosis and concomitant cardiac or renal dysfunction. Prospective randomized data are desired to confirm safety and to prove efficacy in this increasingly important group of patients.}, language = {en} } @article{RauschenbergerPiroKasaragodetal.2023, author = {Rauschenberger, Vera and Piro, Inken and Kasaragod, Vikram Babu and H{\"o}rlin, Verena and Eckes, Anna-Lena and Kluck, Christoph J. and Schindelin, Hermann and Meinck, Hans-Michael and Wickel, Jonathan and Geis, Christian and T{\"u}z{\"u}n, Erdem and Doppler, Kathrin and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor autoantibody binding to the extracellular domain is independent from receptor glycosylation}, series = {Frontiers in Molecular Neuroscience}, volume = {16}, journal = {Frontiers in Molecular Neuroscience}, doi = {10.3389/fnmol.2023.1089101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304206}, year = {2023}, abstract = {Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor's glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.}, language = {en} } @article{GoepfertTraubSelletal.2023, author = {G{\"o}pfert, Dennis and Traub, Jan and Sell, Roxane and Homola, Gy{\"o}rgy A. and Vogt, Marius and Pham, Mirko and Frantz, Stefan and St{\"o}rk, Stefan and Stoll, Guido and Frey, Anna}, title = {Profiles of cognitive impairment in chronic heart failure—A cluster analytic approach}, series = {Frontiers in Human Neuroscience}, volume = {17}, journal = {Frontiers in Human Neuroscience}, doi = {10.3389/fnhum.2023.1126553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313429}, year = {2023}, abstract = {Background Cognitive impairment is a major comorbidity in patients with chronic heart failure (HF) with a wide range of phenotypes. In this study, we aimed to identify and compare different clusters of cognitive deficits. Methods The prospective cohort study "Cognition.Matters-HF" recruited 147 chronic HF patients (aged 64.5 ± 10.8 years; 16.2\% female) of any etiology. All patients underwent extensive neuropsychological testing. We performed a hierarchical cluster analysis of the cognitive domains, such as intensity of attention, visual/verbal memory, and executive function. Generated clusters were compared exploratively with respect to the results of cardiological, neurological, and neuroradiological examinations without correction for multiple testing. Results Dendrogram and the scree plot suggested three distinct cognitive profiles: In the first cluster, 42 patients (28.6\%) performed without any deficits in all domains. Exclusively, the intensity of attention deficits was seen in the second cluster, including 55 patients (37.4\%). A third cluster with 50 patients (34.0\%) was characterized by deficits in all cognitive domains. Age (p = 0.163) and typical clinical markers of chronic HF, such as ejection fraction (p = 0.222), 6-min walking test distance (p = 0.138), NT-proBNP (p = 0.364), and New York Heart Association class (p = 0.868) did not differ between clusters. However, we observed that women (p = 0.012) and patients with previous cardiac valve surgery (p = 0.005) prevailed in the "global deficits" cluster and the "no deficits" group had a lower prevalence of underlying arterial hypertension (p = 0.029). Total brain volume (p = 0.017) was smaller in the global deficit cluster, and serum levels of glial fibrillary acidic protein were increased (p = 0.048). Conclusion Apart from cognitively healthy and globally impaired HF patients, we identified a group with deficits only in the intensity of attention. Women and patients with previous cardiac valve surgery are at risk for global cognitive impairment when suffering HF and could benefit from special multimodal treatment addressing the psychosocial condition.}, language = {en} } @article{LehriederZapantisPhametal.2023, author = {Lehrieder, Dominik and Zapantis, Nikolaos and Pham, Mirko and Schuhmann, Michael Klaus and Haarmann, Axel}, title = {Treating seronegative neuromyelitis optica spectrum disorder with inebilizumab: a case report}, series = {Frontiers in Neurology}, volume = {14}, journal = {Frontiers in Neurology}, doi = {10.3389/fneur.2023.1297341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354031}, year = {2023}, abstract = {Background Neuromyelitis optica spectrum disorder (NMOSD) is a devastating inflammatory disease of the central nervous system that is often severely disabling from the outset. The lack of pathognomonic aquaporin 4 (AQP4) antibodies in seronegative NMOSD not only hinders early diagnosis, but also limits therapeutic options, in contrast to AQP4 antibody-positive NMOSD, where the therapeutic landscape has recently evolved massively. Case presentation We report a 56-year-old woman with bilateral optic neuritis and longitudinally extensive myelitis as the index events of a seronegative NMOSD, who was successfully treated with inebilizumab. Conclusion Treatment with inebilizumab may be considered in aggressive seronegative NMOSD. Whether broader CD19-directed B cell depletion is more effective than treatment with rituximab remains elusive.}, language = {en} } @article{HeckerGruenerHartmannsbergeretal.2023, author = {Hecker, Katharina and Gr{\"u}ner, Julia and Hartmannsberger, Beate and Appeltshauser, Luise and Villmann, Carmen and Sommer, Claudia and Doppler, Kathrin}, title = {Different binding and pathogenic effect of neurofascin and contactin-1 autoantibodies in autoimmune nodopathies}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1189734}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320395}, year = {2023}, abstract = {Introduction IgG4 autoantibodies against paranodal proteins are known to induce acute-onset and often severe sensorimotor autoimmune neuropathies. How autoantibodies reach their antigens at the paranode in spite of the myelin barrier is still unclear. Methods We performed in vitro incubation experiments with patient sera on unfixed and unpermeabilized nerve fibers and in vivo intraneural and intrathecal passive transfer of patient IgG to rats, to explore the access of IgG autoantibodies directed against neurofascin-155 and contactin-1 to the paranodes and their pathogenic effect. Results We found that in vitro incubation resulted in weak paranodal binding of anti-contactin-1 autoantibodies whereas anti-neurofascin-155 autoantibodies bound to the nodes more than to the paranodes. After short-term intraneural injection, no nodal or paranodal binding was detectable when using anti-neurofascin-155 antibodies. After repeated intrathecal injections, nodal more than paranodal binding could be detected in animals treated with anti-neurofascin-155, accompanied by sensorimotor neuropathy. In contrast, no paranodal binding was visible in rats intrathecally injected with anti-contactin-1 antibodies, and animals remained unaffected. Conclusion These data support the notion of different pathogenic mechanisms of anti-neurofascin-155 and anti-contactin-1 autoantibodies and different accessibility of paranodal and nodal structures.}, language = {en} } @article{GarciaFernandezHoefflinRauschetal.2023, author = {Garc{\´i}a-Fern{\´a}ndez, Patricia and H{\"o}fflin, Klemens and Rausch, Antonia and Strommer, Katharina and Neumann, Astrid and Cebulla, Nadine and Reinhold, Ann-Kristin and Rittner, Heike and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Systemic inflammatory markers in patients with polyneuropathies}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1067714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304217}, year = {2023}, abstract = {Introduction In patients with peripheral neuropathies (PNP), neuropathic pain is present in 50\% of the cases, independent of the etiology. The pathophysiology of pain is poorly understood, and inflammatory processes have been found to be involved in neuro-degeneration, -regeneration and pain. While previous studies have found a local upregulation of inflammatory mediators in patients with PNP, there is a high variability described in the cytokines present systemically in sera and cerebrospinal fluid (CSF). We hypothesized that the development of PNP and neuropathic pain is associated with enhanced systemic inflammation. Methods To test our hypothesis, we performed a comprehensive analysis of the protein, lipid and gene expression of different pro- and anti-inflammatory markers in blood and CSF from patients with PNP and controls. Results While we found differences between PNP and controls in specific cytokines or lipids, such as CCL2 or oleoylcarnitine, PNP patients and controls did not present major differences in systemic inflammatory markers in general. IL-10 and CCL2 levels were related to measures of axonal damage and neuropathic pain. Lastly, we describe a strong interaction between inflammation and neurodegeneration at the nerve roots in a specific subgroup of PNP patients with blood-CSF barrier dysfunction. Conclusion In patients with PNP systemic inflammatory, markers in blood or CSF do not differ from controls in general, but specific cytokines or lipids do. Our findings further highlight the importance of CSF analysis in patients with peripheral neuropathies.}, language = {en} } @article{HornKristLiebetal.2021, author = {Horn, A. and Krist, L. and Lieb, W. and Montellano, F. A. and Kohls, M. and Haas, K. and Gelbrich, G. and Bolay-Gehrig, S. J. and Morbach, C. and Reese, J. P. and St{\"o}rk, S. and Fricke, J. and Zoller, T. and Schmidt, S. and Triller, P. and Kretzler, L. and R{\"o}nnefarth, M. and Von Kalle, C. and Willich, S. N. and Kurth, F. and Steinbeis, F. and Witzenrath, M. and Bahmer, T. and Hermes, A. and Krawczak, M. and Reinke, L. and Maetzler, C. and Franzenburg, J. and Enderle, J. and Flinspach, A. and Vehreschild, J. and Schons, M. and Illig, T. and Anton, G. and Ungeth{\"u}m, K. and Finkenberg, B. C. and Gehrig, M. T. and Savaskan, N. and Heuschmann, P. U. and Keil, T. and Schreiber, S.}, title = {Long-term health sequelae and quality of life at least 6 months after infection with SARS-CoV-2: design and rationale of the COVIDOM-study as part of the NAPKON population-based cohort platform (POP)}, series = {Infection}, volume = {49}, journal = {Infection}, number = {6}, issn = {0300-8126}, doi = {10.1007/s15010-021-01707-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308960}, pages = {1277-1287}, year = {2021}, abstract = {Purpose Over the course of COVID-19 pandemic, evidence has accumulated that SARS-CoV-2 infections may affect multiple organs and have serious clinical sequelae, but on-site clinical examinations with non-hospitalized samples are rare. We, therefore, aimed to systematically assess the long-term health status of samples of hospitalized and non-hospitalized SARS-CoV-2 infected individuals from three regions in Germany. Methods The present paper describes the COVIDOM-study within the population-based cohort platform (POP) which has been established under the auspices of the NAPKON infrastructure (German National Pandemic Cohort Network) of the national Network University Medicine (NUM). Comprehensive health assessments among SARS-CoV-2 infected individuals are conducted at least 6 months after the acute infection at the study sites Kiel, W{\"u}rzburg and Berlin. Potential participants were identified and contacted via the local public health authorities, irrespective of the severity of the initial infection. A harmonized examination protocol has been implemented, consisting of detailed assessments of medical history, physical examinations, and the collection of multiple biosamples (e.g., serum, plasma, saliva, urine) for future analyses. In addition, patient-reported perception of the impact of local pandemic-related measures and infection on quality-of-life are obtained. Results As of July 2021, in total 6813 individuals infected in 2020 have been invited into the COVIDOM-study. Of these, about 36\% wished to participate and 1295 have already been examined at least once. Conclusion NAPKON-POP COVIDOM-study complements other Long COVID studies assessing the long-term consequences of an infection with SARS-CoV-2 by providing detailed health data of population-based samples, including individuals with various degrees of disease severity. Trial registration Registered at the German registry for clinical studies (DRKS00023742).}, language = {en} } @article{ElhfnawyElsalamawyAbdelraoufetal.2020, author = {Elhfnawy, Ahmed Mohamed and Elsalamawy, Doaa and Abdelraouf, Mervat and Schliesser, Mira and Volkmann, Jens and Fluri, Felix}, title = {Red flags for a concomitant giant cell arteritis in patients with vertebrobasilar stroke: a cross-sectional study and systematic review}, series = {Acta Neurologica Belgica}, volume = {120}, journal = {Acta Neurologica Belgica}, number = {6}, issn = {0300-9009}, doi = {10.1007/s13760-020-01344-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-315610}, pages = {1389-1398}, year = {2020}, abstract = {Giant cell arteritis (GCA) may affect the brain-supplying arteries, resulting in ischemic stroke, whereby the vertebrobasilar territory is most often involved. Since etiology is unknown in 25\% of stroke patients and GCA is hardly considered as a cause, we examined in a pilot study, whether screening for GCA after vertebrobasilar stroke might unmask an otherwise missed disease. Consecutive patients with vertebrobasilar stroke were prospectively screened for GCA using erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hemoglobin, and halo sign of the temporal and vertebral artery on ultrasound. Furthermore, we conducted a systematic literature review for relevant studies. Sixty-five patients were included, and two patients (3.1\%) were diagnosed with GCA. Patients with GCA were older in age (median 85 versus 69 years, p = 0.02). ESR and CRP were significantly increased and hemoglobin was significantly lower in GCA patients compared to non-GCA patients (median, 75 versus 11 mm in 1 h, p = 0.001; 3.84 versus 0.25 mg/dl, p = 0.01, 10.4 versus 14.6 mg/dl, p = 0.003, respectively). Multiple stenoses/occlusions in the vertebrobasilar territory affected our two GCA patients (100\%), but only five (7.9\%) non-GCA patients (p = 0.01). Our literature review identified 13 articles with 136 stroke patients with concomitant GCA. Those were old in age. Headache, increased inflammatory markers, and anemia were frequently reported. Multiple stenoses/occlusions in the vertebrobasilar territory affected around 70\% of stroke patients with GCA. Increased inflammatory markers, older age, anemia, and multiple stenoses/occlusions in the vertebrobasilar territory may be regarded as red flags for GCA among patients with vertebrobasilar stroke.}, language = {en} } @article{AndreskaLueningschroerWolfetal.2023, author = {Andreska, Thomas and L{\"u}ningschr{\"o}r, Patrick and Wolf, Daniel and McFleder, Rhonda L. and Ayon-Olivas, Maurilyn and Rattka, Marta and Drechsler, Christine and Perschin, Veronika and Blum, Robert and Aufmkolk, Sarah and Granado, Noelia and Moratalla, Rosario and Sauer, Markus and Monoranu, Camelia and Volkmann, Jens and Ip, Chi Wang and Stigloher, Christian and Sendtner, Michael}, title = {DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons}, series = {Cell Reports}, volume = {42}, journal = {Cell Reports}, number = {6}, doi = {10.1016/j.celrep.2023.112575}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349932}, year = {2023}, abstract = {Highlights • Dopamine receptor-1 activation induces TrkB cell-surface expression in striatal neurons • Dopaminergic deficits cause TrkB accumulation and clustering in the ER • TrkB clusters colocalize with cargo receptor SORCS-2 in direct pathway striatal neurons • Intracellular TrkB clusters fail to fuse with lysosomes after dopamine depletion Summary Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.}, language = {en} } @article{GrotemeyerFischerKoprichetal.2023, author = {Grotemeyer, Alexander and Fischer, Judith F. and Koprich, James B. and Brotchie, Jonathan M. and Blum, Robert and Volkmann, Jens and Ip, Chi Wang}, title = {Inflammasome inhibition protects dopaminergic neurons from α-synuclein pathology in a model of progressive Parkinson's disease}, series = {Journal of Neuroinflammation}, volume = {20}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-023-02759-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357652}, year = {2023}, abstract = {Neuroinflammation has been suggested as a pathogenetic mechanism contributing to Parkinson's disease (PD). However, anti-inflammatory treatment strategies have not yet been established as a therapeutic option for PD patients. We have used a human α-synuclein mouse model of progressive PD to examine the anti-inflammatory and neuroprotective effects of inflammasome inhibition on dopaminergic (DA) neurons in the substantia nigra (SN). As the NLRP3 (NOD-, LRR- and pyrin domain-containing 3)-inflammasome is a core interface for both adaptive and innate inflammation and is also highly druggable, we investigated the implications of its inhibition. Repeat administration of MCC950, an inhibitor of NLRP3, in a PD model with ongoing pathology reduced CD4\(^+\) and CD8\(^+\) T cell infiltration into the SN. Furthermore, the anti-inflammasome treatment mitigated microglial activation and modified the aggregation of α-synuclein protein in DA neurons. MCC950-treated mice showed significantly less neurodegeneration of DA neurons and a reduction in PD-related motor behavior. In summary, early inflammasome inhibition can reduce neuroinflammation and prevent DA cell death in an α-synuclein mouse model for progressive PD.}, language = {en} } @article{HartmannsbergerScribaGuidolinetal.2024, author = {Hartmannsberger, Beate and Scriba, Sabrina and Guidolin, Carolina and Becker, Juliane and Mehling, Katharina and Doppler, Kathrin and Sommer, Claudia and Rittner, Heike L.}, title = {Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome}, series = {Journal of Neuroinflammation}, volume = {21}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-023-02969-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357164}, year = {2024}, abstract = {Background Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. Methods We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. Results Intraepidermal Schwann cells were detected in human skin of the finger—but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other—but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. Conclusions Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.}, language = {en} } @article{SchuhmannLanghauserZimmermannetal.2023, author = {Schuhmann, Michael K. and Langhauser, Friederike and Zimmermann, Lena and Bellut, Maximilian and Kleinschnitz, Christoph and Fluri, Felix}, title = {Dimethyl fumarate attenuates lymphocyte infiltration and reduces infarct size in experimental stroke}, series = {International journal of molecular sciences}, volume = {24}, journal = {International journal of molecular sciences}, number = {21}, doi = {10.3390/ijms242115540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357731}, year = {2023}, abstract = {Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.}, language = {en} } @article{PozziBolzoniBiellaetal.2023, author = {Pozzi, Nicol{\´o} Gabriele and Bolzoni, Francesco and Biella, Gabriele Eliseo Mario and Pezzoli, Gianni and Ip, Chi Wang and Volkmann, Jens and Cavallari, Paolo and Asan, Esther and Isaias, Ioannis Ugo}, title = {Brain noradrenergic innervation supports the development of Parkinson's tremor: a study in a reserpinized rat model}, series = {Cells}, volume = {12}, journal = {Cells}, number = {21}, issn = {2073-4409}, doi = {10.3390/cells12212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357721}, year = {2023}, abstract = {The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (\% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.}, language = {en} } @phdthesis{Wilhelmi2024, author = {Wilhelmi, Kai Alexander}, title = {Untersuchung von Ver{\"a}nderungen der myelinisierten Nervenfasern durch Entmarkung in Haut- und Nervenbiopsien von Patienten mit Polyneuropathie}, doi = {10.25972/OPUS-36004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In dieser Arbeit wurde durch das immunhistochemische Anf{\"a}rben von nodalen (Natriumkan{\"a}le, NF), paranodalen (Caspr, NF) und internodalen (MBP) Proteinen der in Fingerhautbiopsien vorhanden Nervenfasern untersucht, ob eine Ver{\"a}nderung der typischen Verteilungsmuster dieser Proteine, eine demyelinisierende Polyneuropathie anzeigen kann. Dazu wurden am Universit{\"a}tsklinikum W{\"u}rzburg prospektiv 93 Polyneuropathie-Patienten und 25 Kontrollpersonen rekrutiert. Bei allen Patienten wurden Hautstanzbiospien am Zeigefinger durchgef{\"u}hrt. Bei 35 Patienten mit schweren oder unklaren Verl{\"a}ufen, wurden konsiliarisch Nervus suralis Biopsien durchgef{\"u}hrt. Aus einem Abschnitt von 27 dieser Biopsien, konnten im Rahmen dieser Arbeit Zupfnervenpr{\"a}parate angefertigt und analog zu den Hautbiopsien ausgewertet werden. Aus der Routinediagnostik der Klinik flossen weiterhin die Ergebnisse der elektrophysiologischen Routinediagnostik und der Histologiebefund der Nervus suralis Biopsien in die Auswertung ein. Zusammenfassend kamen ver{\"a}nderte Natriumkanalbanden in Fingerhautbiopsien signifikant h{\"a}ufiger bei Patienten mit elektrophysiologisch als demyelinisierend befundeten Polyneuropathien, als bei Patienten mit elektrophysiologisch als axonal befundeten Polyneuropathien vor. Vielfach fanden sich ver{\"a}nderte Natriumkanalbanden inmitten para- und internodal unauff{\"a}lliger Schn{\"u}rringe und umgekehrt. Diese Beobachtung st{\"u}tzt die bereits in Vorarbeiten vorgeschlagene und in der aktuellen Leitlinie zur Diagnostik f{\"u}r Polyneuropathien aufgegriffene Entit{\"a}t der Paranodopathien (Uncini, Susuki, \& Yuki, 2013). M{\"o}glich w{\"a}re, dass eine ver{\"a}nderte Verteilung der Natriumkan{\"a}le die schnelle Leitf{\"a}higkeit beeintr{\"a}chtigen und somit trotz intakter Bemarkung, elektrophysiologisch das Bild einer demyelinisierenden Neuropathie vermittelt. Ein direkter Zusammenhang zwischen dem Auftreten von doppelten und verl{\"a}ngerten Natriumkanalbanden und einzelnen Messwerten (z.B. Amplituden und Latenzzeiten) fand sich nicht. Auch in den Zupfnervenpr{\"a}paraten der Nervus suralis Biopsien, konnten o.g. Verteilungsmuster untersucht werden. Deren Vorkommen zeigte sich als unabh{\"a}ngig vom elektrophysiologischen und histologischen Befund, von der {\"A}tiologie der PNP und von den gefundenen Ver{\"a}nderungen in den Hautbiopsien des betreffenden Patienten.}, subject = {Polyneuropathie}, language = {de} } @article{DingSeusingNasseroleslamietal.2023, author = {Ding, Hao and Seusing, Nelly and Nasseroleslami, Bahman and Anwar, Abdul Rauf and Strauss, Sebastian and Lotze, Martin and Grothe, Matthias and Groppa, Sergiu and Muthuraman, Muthuraman}, title = {The role of ipsilateral motor network in upper limb movement}, series = {Frontiers in Physiology}, volume = {14}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2023.1199338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321805}, year = {2023}, abstract = {The execution of voluntary movements is primarily governed by the cerebral hemisphere contralateral to the moving limb. Previous research indicates that the ipsilateral motor network, comprising the primary motor cortex (M1), supplementary motor area (SMA), and premotor cortex (PM), plays a crucial role in the planning and execution of limb movements. However, the precise functions of this network and its interplay in different task contexts have yet to be fully understood. Twenty healthy right-handed participants (10 females, mean age 26.1 ± 4.6 years) underwent functional MRI scans while performing biceps brachii representations such as bilateral, unilateral flexion, and bilateral flexion-extension. Ipsilateral motor evoked potentials (iMEPs) were obtained from the identical set of participants in a prior study using transcranial magnetic stimulation (TMS) targeting M1 while employing the same motor tasks. The voxel time series was extracted based on the region of interest (M1, SMA, ventral PM and dorsal PM). Directed functinal connectivity was derived from the extracted time series using time-resolved partial directed coherence. We found increased connectivity from left-PMv to both sides M1, as well as right-PMv to both sides SMA, in unilateral flexion compared to bilateral flexion. Connectivity from left M1 to left-PMv, and left-SMA to right-PMd, also increased in both unilateral flexion and bilateral flexion-extension compared to bilateral flexion. However, connectivity between PMv and right-M1 to left-PMd decreased during bilateral flexion-extension compared to unilateral flexion. Additionally, during bilateral flexion-extension, the connectivity from right-M1 to right-SMA had a negative relationship with the area ratio of iMEP in the dominant side. Our results provide corroborating evidence for prior research suggesting that the ipsilateral motor network is implicated in the voluntary movements and underscores its involvement in cognitive processes such as movement planning and coordination. Moreover, ipsilateral connectivity from M1 to SMA on the dominant side can modulate the degree of ipsilateral M1 activation during bilateral antagonistic contraction.}, language = {en} } @article{BarlinnWinzerWorthmannetal.2021, author = {Barlinn, J. and Winzer, S. and Worthmann, H. and Urbanek, C. and H{\"a}usler, K. G. and G{\"u}nther, A. and Erdur, H. and G{\"o}rtler, M. and Busetto, L. and Wojciechowski, C. and Schmitt, J. and Shah, Y. and B{\"u}chele, B. and Sokolowski, P. and Kraya, T. and Merkelbach, S. and Rosengarten, B. and Stangenberg-Gliss, K. and Weber, J. and Schlachetzki, F. and Abu-Mugheisib, M. and Petersen, M. and Schwartz, A. and Palm, F. and Jowaed, A. and Volbers, B. and Zickler, P. and Remi, J. and Bardutzky, J. and B{\"o}sel, J. and Audebert, H. J. and Hubert, G. J. and Gumbinger, C.}, title = {Telemedizin in der Schlaganfallversorgung - versorgungsrelevant f{\"u}r Deutschland}, series = {Der Nervenarzt}, volume = {92}, journal = {Der Nervenarzt}, number = {6}, issn = {0028-2804}, doi = {10.1007/s00115-021-01137-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307752}, pages = {593-601}, year = {2021}, abstract = {Hintergrund und Ziel Telemedizinische Schlaganfall-Netzwerke tragen dazu bei, die Schlaganfallversorgung und insbesondere den Zugang zu zeitkritischen Schlaganfalltherapien in vorrangig strukturschwachen, l{\"a}ndlichen Regionen zu gew{\"a}hrleisten. Ziel ist eine Darstellung der Nutzungsfrequenz und regionalen Verteilung dieser Versorgungsstruktur. Methoden Die Kommission „Telemedizinische Schlaganfallversorgung" der Deutschen Schlaganfall-Gesellschaft f{\"u}hrte eine Umfragestudie in allen Schlaganfall-Netzwerken durch. Ergebnisse In Deutschland sind 22 telemedizinische Schlaganfall-Netzwerke aktiv, welche insgesamt 43 Zentren (pro Netzwerk: Median 1,5, Interquartilsabstand [IQA] 1-3) sowie 225 Kooperationskliniken (pro Netzwerk: Median 9, IQA 4-17) umfassen und an einem unmittelbaren Zugang zur Schlaganfallversorgung f{\"u}r 48 Mio. Menschen teilhaben. Im Jahr 2018 wurden 38.211 Telekonsile (pro Netzwerk: Median 1340, IQA 319-2758) durchgef{\"u}hrt. Die Thrombolyserate betrug 14,1 \% (95 \%-Konfidenzintervall 13,6-14,7 \%), eine Verlegung zur Thrombektomie wurde bei 7,9 \% (95 \%-Konfidenzintervall 7,5-8,4 \%) der isch{\"a}mischen Schlaganfallpatienten initiiert. Das Finanzierungssystem ist uneinheitlich mit einem Verg{\"u}tungssystem f{\"u}r die Zentrumsleistungen in nur drei Bundesl{\"a}ndern. Diskussion Etwa jeder 10. Schlaganfallpatient wird telemedizinisch behandelt. Die telemedizinischen Schlaganfall-Netzwerke erreichen vergleichbar hohe Lyseraten und Verlegungen zur Thrombektomie wie neurologische Stroke-Units und tragen zur Sicherstellung einer fl{\"a}chendeckenden Schlaganfallversorgung bei. Eine netzwerk{\"u}bergreifende Sicherstellung der Finanzierung und einheitliche Erhebung von Qualit{\"a}tssicherungsdaten haben das Potenzial diese Versorgungsstruktur zuk{\"u}nftig weiter zu st{\"a}rken.}, language = {de} } @article{GrohAbdelwahabKattimanietal.2023, author = {Groh, Janos and Abdelwahab, Tassnim and Kattimani, Yogita and H{\"o}rner, Michaela and Loserth, Silke and Gudi, Viktoria and Adalbert, Robert and Imdahl, Fabian and Saliba, Antoine-Emmanuel and Coleman, Michael and Stangel, Martin and Simons, Mikael and Martini, Rudolf}, title = {Microglia-mediated demyelination protects against CD8\(^+\) T cell-driven axon degeneration in mice carrying PLP defects}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42570-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357641}, year = {2023}, abstract = {Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8\(^+\) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.}, language = {en} } @article{GunkelSchoetzauFluri2023, author = {Gunkel, Sarah and Sch{\"o}tzau, Andreas and Fluri, Felix}, title = {Burden of cerebral small vessel disease and changes of diastolic blood pressure affect clinical outcome after acute ischemic stroke}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-49502-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357669}, year = {2023}, abstract = {Elevated and low blood pressure (BP) may lead to poor functional outcome after ischemic stroke, which is conflicting. Hence, there must be another factor—such as cerebral small vessel disease (cSVD) -interacting with BP and thus, affecting outcome. Here, we investigate the relationship between BP and cSVD regarding outcome after stroke. Data of 423/503 stroke patients were prospectively analyzed. Diastolic (DBP) and systolic BP (SBP) were collected on hospital admission (BP\(_{ad}\)) and over the first 72 h (BP\(_{72h}\)). cSVD-burden was determined on MR-scans. Good functional outcome was defined as a modified Rankin Scale score ≤ 2 at hospital discharge and 12 months thereafter. cSVD was a predictor of poor outcome (OR 2.8; p < 0.001). SBPad, DBP\(_{ad}\) and SBP\(_{72h}\) were not significantly associated with outcome at any time. A significant relationship was found between DBP\(_{72h}\), (p < 0.01), cSVD (p = 0.013) and outcome at discharge. At 12 months, we found a relationship between outcome and DBP\(_{72h}\) (p = 0.018) and a statistical tendency regarding cSVD (p = 0.08). Changes in DBP72h were significantly related with outcome. There was a U-shaped relationship between DBP\(_{72h}\) and outcome at discharge. Our results suggest an individualized stroke care by either lowering or elevating DBP depending on cSVD-burden in order to influence functional outcome.}, language = {en} } @article{OdorferYabeHiewetal.2023, author = {Odorfer, Thorsten M. and Yabe, Marie and Hiew, Shawn and Volkmann, Jens and Zeller, Daniel}, title = {Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-33262-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357713}, year = {2023}, abstract = {Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.}, language = {en} } @article{KuzkinaRoessleSegeretal.2023, author = {Kuzkina, A. and R{\"o}ßle, J. and Seger, A. and Panzer, C. and Kohl, A. and Maltese, V. and Musacchio, T. and Blaschke, S. J. and Tamg{\"u}ney, G. and Kaulitz, S. and Rak, K. and Scherzad, A. and Zimmermann, P. H. and Klussmann, J. P. and Hackenberg, S. and Volkmann, J. and Sommer, C. and Sommerauer, M. and Doppler, K.}, title = {Combining skin and olfactory α-synuclein seed amplification assays (SAA)—towards biomarker-driven phenotyping in synucleinopathies}, series = {npj Parkinson's Disease}, volume = {9}, journal = {npj Parkinson's Disease}, issn = {2373-8057}, doi = {10.1038/s41531-023-00519-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357687}, year = {2023}, abstract = {Seed amplification assays (SAA) are becoming commonly used in synucleinopathies to detect α-synuclein aggregates. Studies in Parkinson's disease (PD) and isolated REM-sleep behavior disorder (iRBD) have shown a considerably lower sensitivity in the olfactory epithelium than in CSF or skin. To get an insight into α-synuclein (α-syn) distribution within the nervous system and reasons for low sensitivity, we compared SAA assessment of nasal brushings and skin biopsies in PD (n = 27) and iRBD patients (n = 18) and unaffected controls (n = 30). α-syn misfolding was overall found less commonly in the olfactory epithelium than in the skin, which could be partially explained by the nasal brushing matrix exerting an inhibitory effect on aggregation. Importantly, the α-syn distribution was not uniform: there was a higher deposition of misfolded α-syn across all sampled tissues in the iRBD cohort compared to PD (supporting the notion of RBD as a marker of a more malignant subtype of synucleinopathy) and in a subgroup of PD patients, misfolded α-syn was detectable only in the olfactory epithelium, suggestive of the recently proposed brain-first PD subtype. Assaying α-syn of diverse origins, such as olfactory (part of the central nervous system) and skin (peripheral nervous system), could increase diagnostic accuracy and allow better stratification of patients.}, language = {en} } @article{McFlederMakhotkinaGrohetal.2023, author = {McFleder, Rhonda L. and Makhotkina, Anastasiia and Groh, Janos and Keber, Ursula and Imdahl, Fabian and Pe{\~n}a Mosca, Josefina and Peteranderl, Alina and Wu, Jingjing and Tabuchi, Sawako and Hoffmann, Jan and Karl, Ann-Kathrin and Pagenstecher, Axel and Vogel, J{\"o}rg and Beilhack, Andreas and Koprich, James B. and Brotchie, Jonathan M. and Saliba, Antoine-Emmanuel and Volkmann, Jens and Ip, Chi Wang}, title = {Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson's disease}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43224-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357696}, year = {2023}, abstract = {Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.}, language = {en} } @article{GriebelSegebarthSteinetal.2023, author = {Griebel, Matthias and Segebarth, Dennis and Stein, Nikolai and Schukraft, Nina and Tovote, Philip and Blum, Robert and Flath, Christoph M.}, title = {Deep learning-enabled segmentation of ambiguous bioimages with deepflash2}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-36960-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357286}, year = {2023}, abstract = {Bioimages frequently exhibit low signal-to-noise ratios due to experimental conditions, specimen characteristics, and imaging trade-offs. Reliable segmentation of such ambiguous images is difficult and laborious. Here we introduce deepflash2, a deep learning-enabled segmentation tool for bioimage analysis. The tool addresses typical challenges that may arise during the training, evaluation, and application of deep learning models on ambiguous data. The tool's training and evaluation pipeline uses multiple expert annotations and deep model ensembles to achieve accurate results. The application pipeline supports various use-cases for expert annotations and includes a quality assurance mechanism in the form of uncertainty measures. Benchmarked against other tools, deepflash2 offers both high predictive accuracy and efficient computational resource usage. The tool is built upon established deep learning libraries and enables sharing of trained model ensembles with the research community. deepflash2 aims to simplify the integration of deep learning into bioimage analysis projects while improving accuracy and reliability.}, language = {en} } @article{IpWischhusen2023, author = {Ip, Chi Wang and Wischhusen, J{\"o}rg}, title = {Versatile guardians: regenerative regulatory T cells in Parkinson's disease rodent models}, series = {Signal Transduction and Targeted Therapy}, volume = {8}, journal = {Signal Transduction and Targeted Therapy}, doi = {10.1038/s41392-023-01681-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357674}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{JaenschEvdokimovEgenolfetal.2024, author = {J{\"a}nsch, Sarah and Evdokimov, Dimitar and Egenolf, Nadine and Meyer zu Altenschildesche, Caren and Kreß, Luisa and {\"U}{\c{c}}eyler, Nurcan}, title = {Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide}, series = {Pain Reports}, volume = {9}, journal = {Pain Reports}, number = {1}, doi = {10.1097/PR9.0000000000001136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350306}, year = {2024}, abstract = {Introduction: Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective: To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods: We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results: FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 \%) FMS patients and 39/53 (73.6 \%) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions: Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.}, language = {en} } @article{BreyerGruenerKleinetal.2024, author = {Breyer, Maximilian and Gr{\"u}ner, Julia and Klein, Alexandra and Finke, Laura and Klug, Katharina and Sauer, Markus and {\"U}{\c{c}}eyler, Nurcan}, title = {\(In\) \(vitro\) characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease}, series = {Molecular Genetics and Metabolism Reports}, volume = {38}, journal = {Molecular Genetics and Metabolism Reports}, issn = {22144269}, doi = {10.1016/j.ymgmr.2023.101029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350295}, year = {2024}, abstract = {Highlights • The GLA variant S126G is not associated with Fabry symptoms in the presented case • S126G has no effect on α-GAL A activity or Gb3 levels in this patient • S126G sensory neurons show no electrophysiological abnormalities Abstract Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.}, language = {en} } @article{BinderLangePozzietal.2023, author = {Binder, Tobias and Lange, Florian and Pozzi, Nicol{\`o} and Musacchio, Thomas and Daniels, Christine and Odorfer, Thorsten and Fricke, Patrick and Matthies, Cordula and Volkmann, Jens and Capetian, Philipp}, title = {Feasibility of local field potential-guided programming for deep brain stimulation in Parkinson's disease: a comparison with clinical and neuro-imaging guided approaches in a randomized, controlled pilot trial}, series = {Brain Stimulation}, volume = {16}, journal = {Brain Stimulation}, number = {5}, doi = {10.1016/j.brs.2023.08.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350280}, pages = {1243-1251}, year = {2023}, abstract = {Highlights • Beta-Guided programming is an innovative approach that may streamline the programming process for PD patients with STN DBS. • While preliminary findings from our study suggest that Beta Titration may potentially mitigate STN overstimulation and enhance symptom control, • Our results demonstrate that beta-guided programming significantly reduces programming time, suggesting it could be efficiently integrated into routine clinical practice using a commercially available patient programmer. Background Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson's disease (PD). Clinical outcomes after DBS can be limited by poor programming, which remains a clinically driven, lengthy and iterative process. Electrophysiological recordings in PD patients undergoing STN-DBS have shown an association between STN spectral power in the beta frequency band (beta power) and the severity of clinical symptoms. New commercially-available DBS devices now enable the recording of STN beta oscillations in chronically-implanted PD patients, thereby allowing investigation into the use of beta power as a biomarker for DBS programming. Objective To determine the potential advantages of beta-guided DBS programming over clinically and image-guided programming in terms of clinical efficacy and programming time. Methods We conducted a randomized, blinded, three-arm, crossover clinical trial in eight Parkinson's patients with STN-DBS who were evaluated three months after DBS surgery. We compared clinical efficacy and time required for each DBS programming paradigm, as well as DBS parameters and total energy delivered between the three strategies (beta-, clinically- and image-guided). Results All three programming methods showed similar clinical efficacy, but the time needed for programming was significantly shorter for beta- and image-guided programming compared to clinically-guided programming (p < 0.001). Conclusion Beta-guided programming may be a useful and more efficient approach to DBS programming in Parkinson's patients with STN-DBS. It takes significantly less time to program than traditional clinically-based programming, while providing similar symptom control. In addition, it is readily available within the clinical DBS programmer, making it a valuable tool for improving current clinical practice.}, language = {en} } @article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @article{GschmackMonoranuMaroufetal.2022, author = {Gschmack, Eva and Monoranu, Camelia-Maria and Marouf, Hecham and Meyer, Sarah and Lessel, Lena and Idris, Raja and Berg, Daniela and Maetzler, Walter and Steigerwald, Frank and Volkmann, Jens and Gerlach, Manfred and Riederer, Peter and Koutsilieri, Eleni and Scheller, Carsten}, title = {Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson's disease}, series = {Journal of Neural Transmission}, volume = {129}, journal = {Journal of Neural Transmission}, number = {5-6}, doi = {10.1007/s00702-022-02495-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325161}, pages = {545-555}, year = {2022}, abstract = {Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.}, language = {en} } @phdthesis{Knorr2024, author = {Knorr, Susanne}, title = {Pathophysiology of early-onset isolated dystonia in a DYT-TOR1A rat model with trauma-induced dystonia-like movements}, doi = {10.25972/OPUS-20609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Early-onset torsion dystonia (DYT-TOR1A, DYT1) is an inherited hyperkinetic movement disorder caused by a mutation of the TOR1A gene encoding the torsinA protein. DYT-TOR1A is characterized as a network disorder of the central nervous system (CNS), including predominantly the cortico-basal ganglia-thalamo-cortical loop resulting in a severe generalized dystonic phenotype. The pathophysiology of DYTTOR1A is not fully understood. Molecular levels up to large-scale network levels of the CNS are suggested to be affected in the pathophysiology of DYT-TOR1A. The reduced penetrance of 30\% - 40\% indicates a gene-environmental interaction, hypothesized as "second hit". The lack of appropriate and phenotypic DYT-TOR1A animal models encouraged us to verify the "second hit" hypothesis through a unilateral peripheral nerve trauma of the sciatic nerve in a transgenic asymptomatic DYT-TOR1A rat model (∆ETorA), overexpressing the human mutated torsinA protein. In a multiscale approach, this animal model was characterized phenotypically and pathophysiologically. Nerve-injured ∆ETorA rats revealed dystonia-like movements (DLM) with a partially generalized phenotype. A physiomarker of human dystonia, describing increased theta oscillation in the globus pallidus internus (GPi), was found in the entopeduncular nucleus (EP), the rodent equivalent to the human GPi, of nerve-injured ∆ETorA rats. Altered oscillation patterns were also observed in the primary motor cortex. Highfrequency stimulation (HFS) of the EP reduced DLM and modulated altered oscillatory activity in the EP and primary motor cortex in nerve-injured ∆ETorA rats. Moreover, the dopaminergic system in ∆ETorA rats demonstrated a significant increased striatal dopamine release and dopamine turnover. Whole transcriptome analysis revealed differentially expressed genes of the circadian clock and the energy metabolism, thereby pointing towards novel, putative pathways in the pathophysiology of DYTTOR1A dystonia. In summary, peripheral nerve trauma can trigger DLM in genetically predisposed asymptomatic ΔETorA rats leading to neurobiological alteration in the central motor network on multiple levels and thereby supporting the "second hit" hypothesis. This novel symptomatic DYT-TOR1A rat model, based on a DYT-TOR1A genetic background, may prove as a valuable chance for DYT-TOR1A dystonia, to further investigate the pathomechanism in more detail and to establish new treatment strategies.}, subject = {Dystonie}, language = {en} } @phdthesis{Behne2024, author = {Behne, Robert Stefan Friedrich}, title = {Development Of A Human iPSC-Derived Cortical Neuron Model Of Adaptor- Protein-Complex-4-Deficiency}, doi = {10.25972/OPUS-35139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Adaptor-protein-4-deficiency (AP-4-deficiency) is an autosomal-recessive childhood- onset form of complicated hereditary spastic paraplegia (HSP) caused by bi-allelic loss- of-function mutations in one of the four subunits of the AP-4-complex. These four conditions are named SPG47 (AP4B1, OMIM \#614066), SPG50 (AP4M1, OMIM \#612936), SPG51 (AP4E1, OMIM \#613744) and SPG52 (AP4S1, OMIM \#614067), respectively and all present with global developmental delay, progressive spasticity and seizures. Imaging features include a thinning of the corpus callosum, ventriculomegaly and white matter changes. AP-4 is a highly conserved heterotetrameric complex, which is responsible for polarized sorting of transmembrane cargo including the autophagy- related protein 9 A (ATG9A). Loss of any of the four subunits leads to an instable complex and defective sorting of AP-4-cargo. ATG9A is implicated in autophagosome formation and neurite outgrowth. It is missorted in AP-4-deficient cells and CNS-specific knockout of Atg9a in mice results in a phenotype reminiscent of AP-4-deficiency. However, the AP-4-related cellular phenotypes including ATG9A missorting have not been investigated in human neurons. Thus, the aim of this study is to provide the first human induced pluripotent stem cell- derived (iPSC) cortical neuron model of AP-4-deficiency to explore AP-4-related phenotypes in preparation for a high-content screening. Under the hypothesis that AP-4- deficiency leads to ATG9A missorting, elevated ATG9A levels, impaired autophagy and neurite outgrowth in human iPSC-derived cortical neurons, in vitro biochemical and imaging assays including automated high-content imaging and analysis were applied. First, these phenotypes were investigated in fibroblasts from three patients with compound heterozygous mutations in the AP4B1 gene and their sex-matched parental controls. The same cell lines were used to generate iPSCs and differentiate them into human excitatory cortical neurons. This work shows that ATG9A is accumulating in the trans-Golgi-network in AP-4- deficient human fibroblasts and that ATG9A levels are increased compared to parental controls and wild type cells suggesting a compensatory mechanism. Protein levels of the AP4E1-subunit were used as a surrogate marker for the AP-4-complex and were decreased in AP-4-deficient fibroblasts with co-immunoprecipitation confirming the instability of the complex. Lentiviral re-expression of the AP4B1-subunit rescues this corroborating the fact that a stable AP-4-complex is needed for ATG9A trafficking. Surprisingly, autophagic flux was present in AP-4-deficient fibroblasts under nutrient- rich and starvation conditions. These phenotypic markers were evaluated in iPSC-derived cortical neurons and here, a robust accumulation of ATG9A in the juxtanuclear area was seen together with elevated ATG9A protein levels. Strikingly, assessment of autophagy markers under nutrient-rich conditions showed alterations in AP-4-deficient iPSC- derived cortical neurons indicating dysfunctional autophagosome formation. These findings point towards a neuron-specific impairment of autophagy and need further investigation. Adding to the range of AP-4-related phenotypes, neurite outgrowth and branching are impaired in AP-4-deficient iPSC-derived cortical neurons as early as 24h after plating and together with recent studies point towards a distinct role of ATG9A in neurodevelopment independent of autophagy. Together, this work provides the first patient-derived neuron model of AP-4-deficiency and shows that ATG9A is sorted in an AP-4-dependent manner. It establishes ATG9A- related phenotypes and impaired neurite outgrowth as robust markers for a high-content screening. This disease model holds the promise of providing a platform to further study AP-4-deficiency and to search for novel therapeutic targets.}, subject = {Adaptorproteine}, language = {en} } @phdthesis{Hoerner2024, author = {H{\"o}rner, Michaela}, title = {The role of inflammation in hereditary spastic paraplegia type 11}, doi = {10.25972/OPUS-30336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Hereditary spastic paraplegias (HSPs) are genetically-determined, neurodegenerative disorders characterized by progressive weakness and spasticity of the lower limbs. Spastic paraplegia type 11 (SPG11) is a complicated form of HSP, which is caused by mutations in the SPG11 gene encoding spatacsin, a protein possibly involved in lysosomal reformation. Based on our previous studies demonstrating that secondary neuroinflammation can be a robust amplifier of various genetically-mediated diseases of both the central and peripheral nervous system, we here test the possibility that neuroinflammation may modify the disease outcome also in a mouse model for SPG11. Spg11-knockout (Spg11-/-) mice develop early walking pattern and behavioral abnormalities, at least partially reflecting motor, and behavioral changes typical for patients. Furthermore, we detected a progressive increase in axonal damage and axonal spheroid formation in the white and grey matter compartments of the central nervous system of Spg11-/- mice. This was accompanied by a concomitant substantial increase of secondary inflammation by cytotoxic CD8+ and CD4+ T-lymphocytes. We here provide evidence that disease-related changes can be ameliorated/delayed by the genetic deletion of the adaptive immune system. Accordingly, we provide evidence that repurposing clinically approved immunomodulators (fingolimod/FTY720 or teriflunomide), that are in use for treatment of multiple sclerosis (MS), also improve disease symptoms in mice, when administered in an early (before neural damage) or late (after/during neural damage) treatment regime. This work provides strong evidence that immunomodulation can be a therapeutic option for the still untreatable SPG11, including its typical neuropsychological features. This poses the question if inflammation is not only a disease amplifier in SPG11 but can act as a unifying factor also for other genetically mediated disorders of the CNS. If true, this may pave the way to therapeutic options in a wide range of still untreatable, primarily genetic, neurological disorders by repurposing approved immunomodulators.}, subject = {Entz{\"u}ndung}, language = {en} } @article{DelVecchioHanafiPozzietal.2023, author = {Del Vecchio, Jasmin and Hanafi, Ibrahem and Pozzi, Nicol{\´o} Gabriele and Capetian, Philipp and Isaias, Ioannis U. and Haufe, Stefan and Palmisano, Chiara}, title = {Pallidal recordings in chronically implanted dystonic patients: mitigation of tremor-related artifacts}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, number = {4}, issn = {2306-5354}, doi = {10.3390/bioengineering10040476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313498}, year = {2023}, abstract = {Low-frequency oscillatory patterns of pallidal local field potentials (LFPs) have been proposed as a physiomarker for dystonia and hold the promise for personalized adaptive deep brain stimulation. Head tremor, a low-frequency involuntary rhythmic movement typical of cervical dystonia, may cause movement artifacts in LFP signals, compromising the reliability of low-frequency oscillations as biomarkers for adaptive neurostimulation. We investigated chronic pallidal LFPs with the Percept\(^{TM}\) PC (Medtronic PLC) device in eight subjects with dystonia (five with head tremors). We applied a multiple regression approach to pallidal LFPs in patients with head tremors using kinematic information measured with an inertial measurement unit (IMU) and an electromyographic signal (EMG). With IMU regression, we found tremor contamination in all subjects, whereas EMG regression identified it in only three out of five. IMU regression was also superior to EMG regression in removing tremor-related artifacts and resulted in a significant power reduction, especially in the theta-alpha band. Pallido-muscular coherence was affected by a head tremor and disappeared after IMU regression. Our results show that the Percept PC can record low-frequency oscillations but also reveal spectral contamination due to movement artifacts. IMU regression can identify such artifact contamination and be a suitable tool for its removal.}, language = {en} } @article{FriedrichSchneiderBuerkleinetal.2023, author = {Friedrich, Maximilian U. and Schneider, Erich and Buerklein, Miriam and Taeger, Johannes and Hartig, Johannes and Volkmann, Jens and Peach, Robert and Zeller, Daniel}, title = {Smartphone video nystagmography using convolutional neural networks: ConVNG}, series = {Journal of Neurology}, volume = {270}, journal = {Journal of Neurology}, number = {5}, doi = {10.1007/s00415-022-11493-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324526}, pages = {2518-2530}, year = {2023}, abstract = {Background Eye movement abnormalities are commonplace in neurological disorders. However, unaided eye movement assessments lack granularity. Although videooculography (VOG) improves diagnostic accuracy, resource intensiveness precludes its broad use. To bridge this care gap, we here validate a framework for smartphone video-based nystagmography capitalizing on recent computer vision advances. Methods A convolutional neural network was fine-tuned for pupil tracking using > 550 annotated frames: ConVNG. In a cross-sectional approach, slow-phase velocity of optokinetic nystagmus was calculated in 10 subjects using ConVNG and VOG. Equivalence of accuracy and precision was assessed using the "two one-sample t-test" (TOST) and Bayesian interval-null approaches. ConVNG was systematically compared to OpenFace and MediaPipe as computer vision (CV) benchmarks for gaze estimation. Results ConVNG tracking accuracy reached 9-15\% of an average pupil diameter. In a fully independent clinical video dataset, ConVNG robustly detected pupil keypoints (median prediction confidence 0.85). SPV measurement accuracy was equivalent to VOG (TOST p < 0.017; Bayes factors (BF) > 24). ConVNG, but not MediaPipe, achieved equivalence to VOG in all SPV calculations. Median precision was 0.30°/s for ConVNG, 0.7°/s for MediaPipe and 0.12°/s for VOG. ConVNG precision was significantly higher than MediaPipe in vertical planes, but both algorithms' precision was inferior to VOG. Conclusions ConVNG enables offline smartphone video nystagmography with an accuracy comparable to VOG and significantly higher precision than MediaPipe, a benchmark computer vision application for gaze estimation. This serves as a blueprint for highly accessible tools with potential to accelerate progress toward precise and personalized Medicine.}, language = {en} } @article{SilwedelHuettenSpeeretal.2023, author = {Silwedel, Christine and H{\"u}tten, Matthias C. and Speer, Christian P. and H{\"a}rtel, Christoph and Haarmann, Axel and Henrich, Birgit and Tijssen, Maud P. M. and Alnakhli, Abdullah Ahmed and Spiller, Owen B. and Schlegel, Nicolas and Seidenspinner, Silvia and Kramer, Boris W. and Glaser, Kirsten}, title = {Ureaplasma-driven neonatal neuroinflammation: novel insights from an ovine model}, series = {Cellular and Molecular Neurobiology}, volume = {43}, journal = {Cellular and Molecular Neurobiology}, number = {2}, doi = {10.1007/s10571-022-01213-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324285}, pages = {785-795}, year = {2023}, abstract = {Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128-129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C-X-C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood-brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation.}, language = {en} } @phdthesis{Goeser2024, author = {G{\"o}ser, Marlies}, title = {"Eignet sich die kritische Flimmerfrequenz zur Diagnose einer minimal hepatischen Enzephalopathie?"}, doi = {10.25972/OPUS-34936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349363}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Korrelation und Kontingenzpr{\"u}fung von Kritischer Flimmerfrequenz als diagnostischem Mittel bei minimal hepatischer Enzephalopathie mit anderen etablierten diagnostischen Mitteln und beschreibenden Parametern. In den Ergebnissen lediglich Korrelation mit Alertness Testung in der Testbatterie. Minimal hepatische Enzephalopathie braucht zur Diagnostik mindestens 2 verschiedene erg{\"a}nzende diagnostische Verfahren (neuropsychologisch und -physiologisch), um sicher entdeckt werden zu k{\"o}nnen. Bei nur einem Testverfahren blieben zahlreiche Betroffene unentdeckt. M{\"o}glicherweise ist das verschiedenen pathophysiologischen Subgruppen geschuldet.}, subject = {Encephalopathia hepatica}, language = {de} } @article{HaufeIsaiasPellegrinietal.2023, author = {Haufe, Stefan and Isaias, Ioannis U. and Pellegrini, Franziska and Palmisano, Chiara}, title = {Gait event prediction using surface electromyography in parkinsonian patients}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, number = {2}, issn = {2306-5354}, doi = {10.3390/bioengineering10020212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304380}, year = {2023}, abstract = {Gait disturbances are common manifestations of Parkinson's disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2\%), and next to no false-positive event detections (<0.1\%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies.}, language = {en} } @article{HaarmannVollmuthKollikowskietal.2023, author = {Haarmann, Axel and Vollmuth, Christoph and Kollikowski, Alexander M. and Heuschmann, Peter U. and Pham, Mirko and Stoll, Guido and Neugebauer, Hermann and Schuhmann, Michael K.}, title = {Vasoactive soluble endoglin: a novel biomarker indicative of reperfusion after cerebral large-vessel occlusion}, series = {Cells}, volume = {12}, journal = {Cells}, number = {2}, issn = {2073-4409}, doi = {10.3390/cells12020288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304995}, year = {2023}, abstract = {Now that mechanical thrombectomy has substantially improved outcomes after large-vessel occlusion stroke in up to every second patient, futile reperfusion wherein successful recanalization is not followed by a favorable outcome is moving into focus. Unfortunately, blood-based biomarkers, which identify critical stages of hemodynamically compromised yet reperfused tissue, are lacking. We recently reported that hypoxia induces the expression of endoglin, a TGF-β co-receptor, in human brain endothelium in vitro. Subsequent reoxygenation resulted in shedding. Our cell model suggests that soluble endoglin compromises the brain endothelial barrier function. To evaluate soluble endoglin as a potential biomarker of reperfusion (-injury) we analyzed its concentration in 148 blood samples of patients with acute stroke due to large-vessel occlusion. In line with our in vitro data, systemic soluble endoglin concentrations were significantly higher in patients with successful recanalization, whereas hypoxia alone did not induce local endoglin shedding, as analyzed by intra-arterial samples from hypoxic vasculature. In patients with reperfusion, higher concentrations of soluble endoglin additionally indicated larger infarct volumes at admission. In summary, we give translational evidence that the sequence of hypoxia and subsequent reoxygenation triggers the release of vasoactive soluble endoglin in large-vessel occlusion stroke and can serve as a biomarker for severe ischemia with ensuing recanalization/reperfusion.}, language = {en} } @phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @article{WohnradeVellingMixetal.2023, author = {Wohnrade, Camilla and Velling, Ann-Kathrin and Mix, Lucas and Wurster, Claudia D. and Cordts, Isabell and Stolte, Benjamin and Zeller, Daniel and Uzelac, Zeljko and Platen, Sophia and Hagenacker, Tim and Deschauer, Marcus and Lingor, Paul and Ludolph, Albert C. and Lul{\´e}, Doroth{\´e}e and Petri, Susanne and Osmanovic, Alma and Schreiber-Katz, Olivia}, title = {Health-related quality of life in spinal muscular atrophy patients and their caregivers — a prospective, cross-sectional, multi-center analysis}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {1}, issn = {2076-3425}, doi = {10.3390/brainsci13010110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305048}, year = {2023}, abstract = {Spinal muscular atrophy (SMA) is a disabling disease that affects not only the patient's health-related quality of life (HRQoL), but also causes a high caregiver burden (CGB). The aim of this study was to evaluate HRQoL, CGB, and their predictors in SMA. In two prospective, cross-sectional, and multi-center studies, SMA patients (n = 39) and SMA patient/caregiver couples (n = 49) filled in the EuroQoL Five Dimension Five Level Scale (EQ-5D-5L) and the Short Form Health Survey 36 (SF-36). Caregivers (CGs) additionally answered the Zarit Burden Interview (ZBI) and the Hospital Anxiety and Depression Scale (HADS). Patients were clustered into two groups with either low or high HRQoL (EQ-5D-5L index value <0.259 or >0.679). The latter group was mostly composed of ambulatory type III patients with higher motor/functional scores. More severely affected patients reported low physical functioning but good mental health and vitality. The CGB (mean ZBI = 22/88) correlated negatively with patients' motor/functional scores and age. Higher CGB was associated with a lower HRQoL, higher depression and anxiety, and more health impairments of the CGs. We conclude that patient and CG well-being levels interact closely, which highlights the need to consider the health of both parties while evaluating novel treatments.}, language = {en} } @article{GarciaFernandezReinholdUeceyleretal.2023, author = {Garc{\´i}a-Fern{\´a}ndez, Patricia and Reinhold, Colette and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Local inflammatory mediators involved in neuropathic pain}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms24097814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313613}, year = {2023}, abstract = {Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous system, 50\% of which present with neuropathic pain. In some types of PNP, pain is restricted to the skin distally in the leg, suggesting a local regulatory process leading to pain. In this study, we proposed a pro-inflammatory pathway mediated by NF-κB that might be involved in the development of pain in patients with painful PNP. To test this hypothesis, we have collected nerve and skin samples from patients with different etiologies and levels of pain. We performed RT-qPCR to analyze the gene expression of the proposed inflammatory pathway components in sural nerve and in distal and proximal skin samples. In sural nerve, we showed a correlation of TLR4 and TNFα to neuropathic pain, and an upregulation of TNFα in patients with severe pain. Patients with an inflammatory PNP also presented a lower expression of TRPV1 and SIRT1. In distal skin, we found a reduced expression of TLR4 and miR-146-5p, in comparison to proximal skin. Our findings thus support our hypothesis of local inflammatory processes involved in pain in PNP, and further show disturbed anti-inflammatory pathways involving TRPV1 and SIRT1 in inflammatory PNP.}, language = {en} } @phdthesis{Spitzel2023, author = {Spitzel, Marlene}, title = {The impact of inflammation, hypoxia, and vasculopathy on pain development in the α-galactosidase A mouse model of Morbus Fabry}, doi = {10.25972/OPUS-34579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345794}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Fabry disease (FD), an X-linked lysosomal storage disorder, is caused by variants in the gene α-galactosidase A (GLA). As a consequence, the encoded homonymous enzyme GLA is not produced in sufficient amount or does not function properly. Subsequently, globotriaosylceradmide (Gb3), the target substrate of GLA, starts accumulating in several cell types, especially neurons and endothelial cells. FD patients suffer from multiorgan symptoms including cardiomyopathy, nephropathy, stroke, and acral burning pain. It is suggested that the impact of pathological Gb3 accumulation, inflammatory and hypoxic processes, and vasculopathy are contributing to the specific FD pain phenotype. Thus, we investigated the role of inflammation, hypoxia, and vasculopathy on molecular level in dorsal root ganglia (DRG) of the GLA knockout (KO) mouse model. Further, we investigated pain-like characteristics of GLA KO mice at baseline (BS), after capsaicin administration, and after repeated enzyme replacement therapy (ERT) administration for a period of 1.5 years. Acquired data showed disturbances in immune response markers represented by downregulated inflammation-associated genes and lower numbers of CD206+ macrophages in DRG of GLA KO mice. Hypoxic mechanisms were active in DRG of GLA KO mice reflected by increased gene expression of hypoxia- and DNA damage-associated targets, higher numbers of hypoxia-inducible factor 1α-positive (HIF1α+) and carbonic anhydrase 9-positive (CA9+) neurons in DRG of GLA KO mice, and DRG neuronal HIF1α cytosolic-nuclear translocation in GLA KO mice. Vascularization in DRG of GLA KO mice was reduced including lower numbers of blood vessel branches and reduced total blood vessel length. Pain-like behavior of the GLA KO mouse model revealed no mechanical hypersensitivity at BS but age-dependent heat hyposensitivity, which developed also age-matched wild type (WT) mice. Capsaicin administration under isoflurane anesthesia did not elicit the development of nocifensive behavior in GLA KO mice after mechanical or heat stimulation. Repeated ERT administration did not show a clear effect in GLA KO mice in terms of restored heat hyposensitivity to BS paw withdrawal latencies. In summary, we demonstrated the impact of disturbed immune response markers, active hypoxic mechanisms, and reduced vascularization on molecular FD pathophysiology.}, subject = {Fabry-Krankheit}, language = {en} } @phdthesis{Steeg2023, author = {Steeg, Felix Leonard}, title = {Kinematische und histomorphologische Charakterisierung des DYT1 Knock-in Mausmodells mit Trauma-induzierter Dystonie}, doi = {10.25972/OPUS-34580}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345805}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die dem Formenkreis der Dystonien zugrundeliegenden, pathophysiologischen Grundlagen sind bislang nicht abschließend gekl{\"a}rt. F{\"u}r die DYT-TOR1A Dystonie ist bekannt, dass eine 3-bp Deletion eines GAG-Codons im TOR1A-Gen auf Chromosom 9 einen Funktionsverlust des Proteins TorsinA bewirkt. Dieser Funktionsverlust wird als ausl{\"o}sender Faktor f{\"u}r die Entstehung der DYT-TOR1A Dystonie angenommen. Nichtsdestotrotz entwickeln lediglich circa 30\% der Mutationstr{\"a}ger eine dystone Bewegungsst{\"o}rung. Als Grund daf{\"u}r wird eine Two-hit Hypothese diskutiert, die zus{\"a}tzlich zur genetischen Pr{\"a}disposition einen Umweltfaktor wie ein peripheres Trauma f{\"u}r die Entstehung von Symptomen postuliert. Durch eine standardisierte Quetschl{\"a}sion des N. ischiadicus konnte mit dieser Arbeit bei DYT1KI M{\"a}usen, die die ∆GAG-Mutation im endogenen Genom tragen, ein dystoner Ph{\"a}notyp hervorgerufen werden. Mit den Aufzeichnungen der M{\"a}use im TST wurde ein neuronales Netzwerk mittels der Software „DeepLabCut" trainiert, sodass die Dystonie-{\"a}hnlichen Bewegungen automatisiert erfasst und ausgewertet werden konnten. Das Netzwerk tr{\"a}gt dazu bei, dem vorwiegend klinischen Syndrom der Dystonie eine objektive kinematische Charakterisierung zu bieten und kann auf andere TSTs anderer Nagermodelle {\"u}bertragen werden. Ferner wurde {\"u}berpr{\"u}ft, ob die beobachteten Bewegungen durch Unterschiede in der Regeneration nach der Nervenquetschung zustande kamen. Elektroneurographien zeigten jedoch diesbez{\"u}glich keine Unterschiede zwischen wt und DYT1KI Tieren. Dar{\"u}ber hinaus sind mikromorphologische Prozesse im zentralen und peripheren Nervensystem Gegenstand dieser Studie. Einerseits konnten wir mittels Immunzellf{\"a}rbungen von T-, B-Zellen, Makrophagen und Mikroglia feststellen, dass sowohl zentral als auch peripher kein Anhalt darauf besteht, dass die beim DYT1KI Mausmodell entstandenen Dystonie-{\"a}hnlichen Bewegungen auf einer Dysfunktion oder Aktivierung des Immunsystems, wie es bei anderen neurologischen Erkrankungen bereits nachgewiesen wurde, eine Rolle spielt. Andererseits konnte anhand stereologischer Messungen gezeigt werden, dass bei den naiven DYT1KI Tieren im Vergleich zu wt Tieren dopaminerge Neurone der SN in der Anzahl verringert und im Volumen vergr{\"o}ßert sind, was auf einen Endoph{\"a}notypen hinweist. Bei den symptomatischen, nervengequetschten DYT1KI M{\"a}usen zeigte sich wiederum eine weitere, signifikante Zunahme der Hypertrophie der dopaminergen Neurone als Hinweis auf eine unmittelbar mit dem dystonen Ph{\"a}notypen in Zusammenhang stehende Ver{\"a}nderung. Zusammenfassend konnte ein symptomatisches Mausmodell von hoher translationaler Bedeutung etabliert werden, in dem sich Hinweise f{\"u}r eine dopaminerge Dysregulation ergaben und welches f{\"u}r weitere Studien, insbesondere therapeutischer Art, eingesetzt werden k{\"o}nnte.}, subject = {Dystonie}, language = {de} } @article{KraftSchuhmann2022, author = {Kraft, Peter and Schuhmann, Michael K.}, title = {Cellular and molecular targets in acute ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288294}, year = {2022}, abstract = {No abstract available}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{KlineLoessleinKurianetal.2022, author = {Kline, Rachel A. and L{\"o}ßlein, Lena and Kurian, Dominic and Aguilar Mart{\´i}, Judit and Eaton, Samantha L. and Court, Felipe A. and Gillingwater, Thomas H. and Wishart, Thomas M.}, title = {An optimized comparative proteomic approach as a tool in neurodegenerative disease research}, series = {Cells}, volume = {11}, journal = {Cells}, number = {17}, issn = {2073-4409}, doi = {10.3390/cells11172653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285912}, year = {2022}, abstract = {Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.}, language = {en} } @article{HussAbdelhakMayeretal.2022, author = {Huss, Andr{\´e} and Abdelhak, Ahmed and Mayer, Benjamin and Tumani, Hayrettin and M{\"u}ller, Hans-Peter and Althaus, Katharina and Kassubek, Jan and Otto, Markus and Ludolph, Albert C. and Yilmazer-Hanke, Deniz and Neugebauer, Hermann}, title = {Association of serum GFAP with functional and neurocognitive outcome in sporadic small vessel disease}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {8}, issn = {2227-9059}, doi = {10.3390/biomedicines10081869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285973}, year = {2022}, abstract = {Cerebrospinal fluid (CSF) and serum biomarkers are critical for clinical decision making in neurological diseases. In cerebral small vessel disease (CSVD), white matter hyperintensities (WMH) are an important neuroimaging biomarker, but more blood-based biomarkers capturing different aspects of CSVD pathology are needed. In 42 sporadic CSVD patients, we prospectively analysed WMH on magnetic resonance imaging (MRI) and the biomarkers neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), chitinase3-like protein 1 (CHI3L1), Tau and Aβ1-42 in CSF and NfL and GFAP in serum. GFAP and CHI3L1 expression was studied in post-mortem brain tissue in additional cases. CSVD cases with higher serum NfL and GFAP levels had a higher modified Rankin Scale (mRS) and NIHSS score and lower CSF Aβ1-42 levels, whereas the CSF NfL and CHI3L1 levels were positively correlated with the WMH load. Moreover, the serum GFAP levels significantly correlated with the neurocognitive functions. Pathological analyses in CSVD revealed a high density of GFAP-immunoreactive fibrillary astrocytic processes in the periventricular white matter and clusters of CHI3L1-immunoreactive astrocytes in the basal ganglia and thalamus. Thus, besides NfL, serum GFAP is a highly promising fluid biomarker of sporadic CSVD, because it does not only correlate with the clinical severity but also correlates with the cognitive function in patients.}, language = {en} } @article{KleinGrohYuanetal.2022, author = {Klein, Dennis and Groh, Janos and Yuan, Xidi and Berve, Kristina and Stassart, Ruth and Fledrich, Robert and Martini, Rudolf}, title = {Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A}, series = {Glia}, volume = {70}, journal = {Glia}, number = {6}, doi = {10.1002/glia.24158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318714}, pages = {1100 -- 1116}, year = {2022}, abstract = {We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.}, language = {en} } @article{SchreglmannBhatia2022, author = {Schreglmann, Sebastian R. and Bhatia, Kailash P.}, title = {HOPS-Associated Neurological Disorders: Lysosomal Dysfunction as an Emerging Concept Underlying Dystonia}, series = {Movement Disorders Clinical Practice}, volume = {9}, journal = {Movement Disorders Clinical Practice}, number = {4}, doi = {10.1002/mdc3.13405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318736}, pages = {452 -- 453}, year = {2022}, language = {en} } @article{SchreglmannBurkeBatlaetal.2022, author = {Schreglmann, Sebastian R. and Burke, Derek and Batla, Amit and Kresojevic, Nikola and Wood, Nicholas and Heales, Simon and Bhatia, Kailash P.}, title = {Cerebellar and Midbrain Lysosomal Enzyme Deficiency in Isolated Dystonia}, series = {Movement Disorders}, volume = {37}, journal = {Movement Disorders}, number = {4}, doi = {10.1002/mds.28937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318743}, pages = {875 -- 877}, year = {2022}, language = {en} } @article{OezdağAcarlıKleinEgenolfetal.2022, author = {{\"O}zdağ Acarl{\i}, Ay{\c{s}}e Nur and Klein, Thomas and Egenolf, Nadine and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Subepidermal Schwann cell counts correlate with skin innervation - an exploratory study}, series = {Muscle \& Nerve}, volume = {65}, journal = {Muscle \& Nerve}, number = {4}, doi = {10.1002/mus.27496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318726}, pages = {471 -- 479}, year = {2022}, abstract = {Introduction/Aims Schwann cell clusters have been described at the murine dermis-epidermis border. We quantified dermal Schwann cells in the skin of patients with small-fiber neuropathy (SFN) compared with healthy controls to correlate with the clinical phenotype. Methods Skin punch biopsies from the lower legs of 28 patients with SFN (11 men, 17 women; median age, 54 [range, 19-73] years) and 9 healthy controls (five men, four women, median age, 34 [range, 25-69] years) were immunoreacted for S100 calcium-binding protein B as a Schwann cell marker, protein-gene product 9.5 as a pan-neuronal marker, and CD207 as a Langerhans cell marker. Intraepidermal nerve fiber density (IENFD) and subepidermal Schwann cell counts were determined. Results Skin samples of patients with SFN showed lower IENFD (P < .05), fewer Schwann cells per millimeter (P < .01), and fewer Schwann cell clusters per millimeter (P < .05) than controls. When comparing SFN patients with reduced (n = 13; median age, 53 [range, 19-73] years) and normal distal (n = 15, median age, 54 [range, 43-68] years) IENFD, the number of solitary Schwann cells per millimeter (p < .01) and subepidermal nerve fibers associated with Schwann cell branches (P < .05) were lower in patients with reduced IENFD. All three parameters correlated positively with distal IENFD (P < .05 to P < .01), whereas no correlation was found between Schwann cell counts and clinical pain characteristics. Discussion Our data raise questions about the mechanisms underlying the interdependence of dermal Schwann cells and skin innervation in SFN. The temporal course and functional impact of Schwann cell presence and kinetics need further investigation.}, language = {en} } @article{Sommer2022, author = {Sommer, Claudia}, title = {Natural course of Guillain-Barr{\´e} syndrome}, series = {European Journal of Neurology}, volume = {29}, journal = {European Journal of Neurology}, number = {10}, doi = {10.1111/ene.15498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318757}, pages = {2881 -- 2882}, year = {2022}, language = {en} } @article{FriedrichEldebakeyRoothansetal.2022, author = {Friedrich, Maximilian U. and Eldebakey, Hazem and Roothans, Jonas and Capetian, Philipp and Zwergal, Andreas and Volkmann, Jens and Reich, Martin}, title = {Current-dependent ocular tilt reaction in deep brain stimulation of the subthalamic nucleus: Evidence for an incerto-interstitial pathway?}, series = {European Journal of Neurology}, volume = {29}, journal = {European Journal of Neurology}, number = {5}, doi = {10.1111/ene.15257}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318700}, pages = {1545 -- 1549}, year = {2022}, abstract = {Background and purpose The aim was to characterize a combined vestibular, ocular motor and postural syndrome induced by deep brain stimulation (DBS) of the subthalamic nucleus in a patient with Parkinson's disease. Methods In a systematic DBS programming session, eye, head and trunk position in roll and pitch plane were documented as a function of stimulation amplitude and field direction. Repeat ocular coherence tomography was used to estimate ocular torsion. The interstitial nucleus of Cajal (INC), zona incerta (ZI) and ascending vestibular fibre tracts were segmented on magnetic resonance imaging using both individual and normative structural connectomic data. Thresholded symptom-associated volumes of tissue activated (VTA) were calculated based on documented stimulation parameters. Results Ipsilateral ocular tilt reaction and body lateropulsion as well as contralateral torsional nystagmus were elicited by the right electrode in a current-dependent manner and subsided after DBS deactivation. With increasing currents, binocular tonic upgaze and body retropulsion were observed. Symptoms were consistent with an irritative effect on the INC. Symptom-associated VTA was found to overlap with the dorsal ZI and the ipsilateral vestibulothalamic tract, while lying rather distant to the INC proper. A ZI-to-INC 'incerto-interstitial' tract with contact to the medial-uppermost portion of the VTA could be traced. Conclusion Unilateral stimulation of INC-related circuitry induces an ipsilateral vestibular, ocular motor and postural roll-plane syndrome, which converts into a pitch-plane syndrome when functional activation expands bilaterally. In this case, tractography points to an incerto-interstitial pathway, a tract previously only characterized in non-human primates. Directional current steering proved useful in managing this rare side effect.}, language = {en} } @article{PohGreenAgostinellietal.2022, author = {Poh, Eugenia Z. and Green, Courtney and Agostinelli, Luca and Penrose-Menz, Marissa and Karl, Ann-Kathrin and Harvey, Alan R. and Rodger, Jennifer}, title = {Manipulating the level of sensorimotor stimulation during LI-rTMS can improve visual circuit reorganisation in adult ephrin-A2A5\(^{-/-}\) Mice}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052418}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284090}, year = {2022}, abstract = {Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has the potential to treat a variety of neurologic and psychiatric disorders. The extent of rTMS-induced neuroplasticity may be dependent on a subject's brain state at the time of stimulation. Chronic low intensity rTMS (LI-rTMS) has previously been shown to induce beneficial structural and functional reorganisation within the abnormal visual circuits of ephrin-A2A5\(^{-/-}\) mice in ambient lighting. Here, we administered chronic LI-rTMS in adult ephrin-A2A5\(^{-/-}\) mice either in a dark environment or concurrently with voluntary locomotion. One day after the last stimulation session, optokinetic responses were assessed and fluorescent tracers were injected to map corticotectal and geniculocortical projections. We found that LI-rTMS in either treatment condition refined the geniculocortical map. Corticotectal projections were improved in locomotion+LI-rTMS subjects, but not in dark + LI-rTMS and sham groups. Visuomotor behaviour was not improved in any condition. Our results suggest that the beneficial reorganisation of abnormal visual circuits by rTMS can be significantly influenced by simultaneous, ambient visual input and is enhanced by concomitant physical exercise. Furthermore, the observed pathway-specific effects suggest that regional molecular changes and/or the relative proximity of terminals to the induced electric fields influence the outcomes of LI-rTMS on abnormal circuitry.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @phdthesis{Messinger2023, author = {Messinger, Julia}, title = {Die Effekte von IVIG auf die Antik{\"o}rperbindung und Komplementablagerung bei Anti-Neurofascin-positiver Nodo-Paranodopathie}, doi = {10.25972/OPUS-32110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Autoantik{\"o}rper gegen nodo-paranodale Proteine des Ranvier'schen Schn{\"u}rrings wie Neurofascin-155 (NF-155), Contactin-1 und Caspr wurden in der Literatur bei Patienten/Patientinnen mit Immunneuropathien beschrieben. Bei zwei bis zehn Prozent der Patienten/Patientinnen mit Immunneuropathien k{\"o}nnen Autoantik{\"o}rper gegen Isoformen des Neurofascin detektiert werden. Patienten/Patientinnen mit Autoantik{\"o}rpern gegen NF-155 weisen gemeinsame klinische Merkmale auf, unter anderem einen schweren Verlauf mit subakutem Beginn, vorwiegend motorischen Defiziten, Tremor und einem schlechten Ansprechen auf eine Therapie mit intraven{\"o}sen Immunglobulinen (IVIG). Ein Grund f{\"u}r Letzteres k{\"o}nnte sein, dass es sich {\"u}berwiegend um Autoantik{\"o}rper der Subklasse IgG4 handelt, die als anti-inflammatorisch gelten und kein Komplement aktivieren. Neben der IgG4-Subklasse k{\"o}nnen bei manchen Erkrankten auch die proinflammatorischen IgG-Subklassen 1 bis 3 nachgewiesen werden. Bei der Anti-Pan-Neurofascin (155/140/186) Polyneuropathie zeigt sich klinisch h{\"a}ufig ein fulminanter Ph{\"a}notyp mit IgG3 Pr{\"a}dominanz. Das Ziel dieser Studie war, die Autoantik{\"o}rper-induzierte Komplementablagerung zu detektieren, sowie die Rolle der IgG Subklasse und die Effekte von IVIG auf Antik{\"o}rperbindung, Komplementaktivierung und Effektorfunktionen zu untersuchen. Hierzu wurde das Serum von 212 Probanden/-innen mit der Verdachtsdiagnose einer entz{\"u}ndlichen Neuropathie auf Autoantik{\"o}rper gegen NF-155 mittels ELISA und Bindungsversuchen an M{\"a}usezupfnerven gescreent. Im Fall eines positiven Ergebnisses dienten zellbasierte Bindungsversuche mit NF-155-transfizierten HEK-293- Zellen als Best{\"a}tigungstest. Die Effekte unterschiedlicher IVIG Konzentrationen auf die Antik{\"o}rperbindung und Komplementablagerung wurden in ELISA, Komplementbindungsassays und zellbasierten Verfahren getestet. Außerdem wurde mithilfe von LDH-Zytotoxizit{\"a}tsmessungen die Komplement-induzierte Zelllyse sowie die Effekte von IVIG untersucht. Klinische Daten wurden retrospektiv ausgewertet. F{\"u}nf Patienten/Patientinnen mit hohen Autoantik{\"o}rpertitern gegen NF-155 und ein Patient mit Anti-Pan-Neurofascin Autoantik{\"o}rpern konnten in der Studie detektiert werden. Der Patient mit Autoantik{\"o}rpern gegen alle drei Isoformen des Neurofascins und IgG3-Pr{\"a}dominanz zeigte die deutlichste Komplementablagerung. Bei drei Patienten/Patientinnen, die IgG1, IgG2 und IgG4 aufwiesen, war eine Aktivierung des Komplementsystems zu beobachten, w{\"a}hrend bei zwei Patienten mit pr{\"a}dominanter IgG4-Antik{\"o}rpersubklasse keine Komplementablagerung nachweisbar war. Bei Letzteren war eine Therapie mit IVIG in der Vorgeschichte erfolglos, w{\"a}hrend es bei zwei der Patienten/Patientinnen mit anderen IgG-Subklassen und Komplementbindung unter IVIG Therapie zu einer m{\"a}ßigen bis deutlichen Symptombesserung in der Akutphase kam. Eine Koinkubation mit IVIG f{\"u}hrte in den ELISA basierten und zellbasierten Versuchen zu keinem Effekt auf die Autoantik{\"o}rperbindung an das Zielantigen, jedoch zu einer deutlichen Reduktion der Antik{\"o}rper-vermittelten Komplementbindung. Diese Reduktion war sowohl bei Koinkuabtion von IVIG mit dem Komplementfaktor C1q als auch bei Pr{\"a}inkubation von IVIG vor C1q Gabe zu sehen. Bei zwei der Patienten/Patientinnen mit hohen Komplementablagerungen konnte eine erh{\"o}hte Zytotoxizit{\"a}t nachgewiesen werden, welche bei Zugabe von IVIG verringert wurde. Schlussfolgernd ist die Autoantik{\"o}rper-induzierte Komplementablagerung abh{\"a}ngig von der pr{\"a}dominanten IgG Subklasse. IVIG f{\"u}hrt zu einer deutlichen, konzentrationsabh{\"a}ngigen Reduktion der Komplementablagerung, sowie m{\"o}glicher zytotoxischer Effektorfunktionen wie die Zytolyse myelinisierter Schwannzellen oder Nervenaxonen. Dar{\"u}ber hinaus k{\"o}nnte die Subklassenanalyse von Erkrankten das Therapieansprechen auf IVIG vorhersagen und sollte daher eine wichtige Rolle in der Diagnostik der Nodo-Paranodopathie spielen. IVIG sowie andere {\"u}ber das Komplementsystem wirkende Therapeutika k{\"o}nnen in der Behandlung der schwer betroffenen Patienten/Patientinnen, insbesondere bei Anti-Pan-Neurofascin positiver Neuropathie, in Betracht gezogen werden.}, subject = {Komplement }, language = {de} } @article{ReinholdKrugSalvadoretal.2022, author = {Reinhold, Ann Kristin and Krug, Susanne M. and Salvador, Ellaine and Sauer, Reine S. and Karl-Sch{\"o}ller, Franziska and Malcangio, Marzia and Sommer, Claudia and Rittner, Heike L.}, title = {MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury}, series = {Annals of the New York Academy of Sciences}, volume = {1515}, journal = {Annals of the New York Academy of Sciences}, number = {1}, doi = {10.1111/nyas.14816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318226}, pages = {184 -- 195}, year = {2022}, abstract = {Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired—partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.}, language = {en} } @article{BaumToykaBlueheretal.2021, author = {Baum, Petra and Toyka, Klaus V. and Bl{\"u}her, Matthias and Kosacka, Joanna and Nowicki, Marcin}, title = {Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN) — new aspects}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms221910835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284556}, year = {2021}, abstract = {The pathogenesis of diabetic neuropathy is complex, and various pathogenic pathways have been proposed. A better understanding of the pathophysiology is warranted for developing novel therapeutic strategies. Here, we summarize recent evidence from experiments using animal models of type 1 and type 2 diabetes showing that low-grade intraneural inflammation is a facet of diabetic neuropathy. Our experimental data suggest that these mild inflammatory processes are a likely common terminal pathway in diabetic neuropathy associated with the degeneration of intraepidermal nerve fibers. In contrast to earlier reports claiming toxic effects of high-iron content, we found the opposite, i.e., nutritional iron deficiency caused low-grade inflammation and fiber degeneration while in normal or high non-heme iron nutrition no or only extremely mild inflammatory signs were identified in nerve tissue. Obesity and dyslipidemia also appear to trigger mild inflammation of peripheral nerves, associated with neuropathy even in the absence of overt diabetes mellitus. Our finding may be the experimental analog of recent observations identifying systemic proinflammatory activity in human sensorimotor diabetic neuropathy. In a rat model of type 1 diabetes, a mild neuropathy with inflammatory components could be induced by insulin treatment causing an abrupt reduction in HbA1c. This is in line with observations in patients with severe diabetes developing a small fiber neuropathy upon treatment-induced rapid HbA1c reduction. If the inflammatory pathogenesis could be further substantiated by data from human tissues and intervention studies, anti-inflammatory compounds with different modes of action may become candidates for the treatment or prevention of diabetic neuropathy.}, language = {en} } @article{BieberFoersterHaefelietal.2021, author = {Bieber, Michael and Foerster, Kathrin I. and Haefeli, Walter E. and Pham, Mirko and Schuhmann, Michael K. and Kraft, Peter}, title = {Treatment with edoxaban attenuates acute stroke severity in mice by reducing blood-brain barrier damage and inflammation}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms22189893}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284481}, year = {2021}, abstract = {Patients with atrial fibrillation and previous ischemic stroke (IS) are at increased risk of cerebrovascular events despite anticoagulation. In these patients, treatment with non-vitamin K oral anticoagulants (NOAC) such as edoxaban reduced the probability and severity of further IS without increasing the risk of major bleeding. However, the detailed protective mechanism of edoxaban has not yet been investigated in a model of ischemia/reperfusion injury. Therefore, in the current study we aimed to assess in a clinically relevant setting whether treatment with edoxaban attenuates stroke severity, and whether edoxaban has an impact on the local cerebral inflammatory response and blood-brain barrier (BBB) function after experimental IS in mice. Focal cerebral ischemia was induced by transient middle cerebral artery occlusion in male mice receiving edoxaban, phenprocoumon or vehicle. Infarct volumes, functional outcome and the occurrence of intracerebral hemorrhage were assessed. BBB damage and the extent of local inflammatory response were determined. Treatment with edoxaban significantly reduced infarct volumes and improved neurological outcome and BBB function on day 1 and attenuated brain tissue inflammation. In summary, our study provides evidence that edoxaban might exert its protective effect in human IS by modulating different key steps of IS pathophysiology, but further studies are warranted.}, language = {en} } @article{StrinitzPhamMaerzetal.2021, author = {Strinitz, Marc and Pham, Mirko and M{\"a}rz, Alexander G. and Feick, J{\"o}rn and Weidner, Franziska and Vogt, Marius L. and Essig, Fabian and Neugebauer, Hermann and Stoll, Guido and Schuhmann, Michael K. and Kollikowski, Alexander M.}, title = {Immune cells invade the collateral circulation during human stroke: prospective replication and extension}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {17}, issn = {1422-0067}, doi = {10.3390/ijms22179161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284281}, year = {2021}, abstract = {It remains unclear if principal components of the local cerebral stroke immune response can be reliably and reproducibly observed in patients with acute large-vessel-occlusion (LVO) stroke. We prospectively studied a large independent cohort of n = 318 consecutive LVO stroke patients undergoing mechanical thrombectomy during which cerebral blood samples from within the occluded anterior circulation and systemic control samples from the ipsilateral cervical internal carotid artery were obtained. An extensive protocol was applied to homogenize the patient cohort and to standardize the procedural steps of endovascular sample collection, sample processing, and laboratory analyses. N = 58 patients met all inclusion criteria. (1) Mean total leukocyte counts were significantly higher within the occluded ischemic cerebral vasculature (I) vs. intraindividual systemic controls (S): +9.6\%, I: 8114/µL ± 529 vs. S: 7406/µL ± 468, p = 0.0125. (2) This increase was driven by neutrophils: +12.1\%, I: 7197/µL ± 510 vs. S: 6420/µL ± 438, p = 0.0022. Leukocyte influx was associated with (3) reduced retrograde collateral flow (R\(^2\) = 0.09696, p = 0.0373) and (4) greater infarct extent (R\(^2\) = 0.08382, p = 0.032). Despite LVO, leukocytes invade the occluded territory via retrograde collateral pathways early during ischemia, likely compromising cerebral hemodynamics and tissue integrity. This inflammatory response can be reliably observed in human stroke by harvesting immune cells from the occluded cerebral vascular compartment.}, language = {en} } @article{StetterLopezCaperuchipiHoppKraemeretal.2021, author = {Stetter, Christian and Lopez-Caperuchipi, Simon and Hopp-Kr{\"a}mer, Sarah and Bieber, Michael and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena and Albert-Weißenberger, Christiane}, title = {Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284959}, year = {2021}, abstract = {Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{-/-}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{-/-}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{-/-}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{-/-}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{-/-}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.}, language = {en} } @article{BaumKojKloetingetal.2021, author = {Baum, Petra and Koj, Severin and Kl{\"o}ting, Nora and Bl{\"u}her, Matthias and Classen, Joseph and Paeschke, Sabine and Gericke, Martin and Toyka, Klaus V. and Nowicki, Marcin and Kosacka, Joanna}, title = {Treatment-induced neuropathy in diabetes (TIND) — Developing a disease model in type 1 diabetic rats}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms22041571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285793}, year = {2021}, abstract = {Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2\%, did we find a significant decrease in mNCV in sciatic nerves (81\% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2\% (mNCV 106\% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2\% (csNCV 90\% of initial values), compared to those rats with a mild decrease <2\% (csNCV 112\% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2\% showed significantly greater infiltration of macrophages by about 50\% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND.}, language = {en} } @article{SaudekCahovaHavrdovaetal.2018, author = {Saudek, František and Cahov{\´a}, Monika and Havrdov{\´a}, Terezie and Zacharovov{\´a}, Kl{\´a}ra and Daňkov{\´a}, Helena and Voska, Luděk and L{\´a}nsk{\´a}, Věra and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Preserved Expression of Skin Neurotrophic Factors in Advanced Diabetic Neuropathy Does Not Lead to Neural Regeneration despite Pancreas and Kidney Transplantation}, series = {Journal of Diabetes Research}, volume = {2018}, journal = {Journal of Diabetes Research}, number = {2309108}, doi = {10.1155/2018/2309108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227469}, pages = {1-11}, year = {2018}, abstract = {Diabetic peripheral neuropathy (DPN) is a common complication of diabetes with potential severe consequences. Its pathogenesis involves hyperglycemia-linked mechanisms, which may include changes in the expression of neurotrophic growth factors. We analyzed the expression of 29 factors potentially related to nerve degeneration and regeneration in skin biopsies from 13 type 1 diabetic pancreas and kidney recipients with severe DPN including severe depletion of intraepidermal nerve fibers (IENF) in lower limb skin biopsies (group Tx1 1st examination). The investigation was repeated after a median 28-month period of normoglycemia achieved by pancreas transplantation (group Tx1 2nd examination). The same tests were performed in 13 stable normoglycemic pancreas and kidney recipients 6-12 years posttransplantation (group Tx2), in 12 matched healthy controls (group HC), and in 12 type 1 diabetic subjects without severe DPN (group DM). Compared to DM and HC groups, we found a significantly higher (p < 0.05-0.001) expression of NGF (nerve growth factor), NGFR (NGF receptor), NTRK1 (neurotrophic receptor tyrosine kinase 1), GDNF (glial cell-derived neurotrophic factor), GFRA1 (GDNF family receptor alpha 1), and GFAP (glial fibrillary acidic protein) in both transplant groups (Tx1 and Tx2). Enhanced expression of these factors was not normalized following the median 28-month period of normoglycemia (Tx1 2nd examination) and negatively correlated with IENF density and with electrophysiological indices of DPN (vibration perception threshold, electromyography, and autonomic tests). In contrast to our expectation, the expression of most of 29 selected factors related to neural regeneration was comparable in subjects with severe peripheral nerve fiber depletion and healthy controls and the expression of six factors was significantly upregulated. These findings may be important for better understanding the pathophysiology of nerve regeneration and for the development of intervention strategies.}, language = {en} } @article{SamperAgreloSchiraHeinenBeyeretal.2020, author = {Samper Agrelo, Iria and Schira-Heinen, Jessica and Beyer, Felix and Groh, Janos and B{\"u}termann, Christine and Estrada, Veronica and Poschmann, Gereon and Bribian, Ana and Jadasz, Janusz J. and Lopez-Mascaraque, Laura and Kremer, David and Martini, Rudolf and M{\"u}ller, Hans Werner and Hartung, Hans Peter and Adjaye, James and St{\"u}hler, Kai and K{\"u}ry, Patrick}, title = {Secretome analysis of mesenchymal stem cell factors fostering oligodendroglial differentiation of neural stem cells in vivo}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms21124350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285465}, year = {2020}, abstract = {Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.}, language = {en} } @phdthesis{Stoessel2023, author = {St{\"o}ßel, Anna}, title = {Auswirkungen zerebell{\"a}rer Gleichstromstimulation auf das motorische Lernen bei gesunden {\"a}lteren Probanden}, doi = {10.25972/OPUS-31793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Sowohl neurologische Erkrankungen als auch der nat{\"u}rliche Alterungsprozess gehen regelhaft mit einem Untergang von Neuronen einher und bedingen neurologische Funktionsverluste. Diese mit Hilfe nicht-invasiver Techniken, beispielsweise tDCS, zu reduzieren, stellt ein wichtiges Ziel der neurowissenschaftlichen Forschung dar. Neben Arbeiten, die tDCS-Effekte auf das motorische Lernen bei Stimulation des motorischen Kortex nachweisen konnten, gibt es auch Hinweise f{\"u}r solche Effekte bei Stimulation des Kleinhirns. Allerdings besteht derzeit noch eine hohe Variabilit{\"a}t und damit einhergehend eine schlechte Vergleichbarkeit der Studien bez{\"u}glich ihrer Stimulationsbedingungen. Das Ansprechen unterschiedlicher Altersgruppen bleibt unklar. In der vorliegenden Arbeit wurden die Effekte zerebell{\"a}rer a-tDCS auf das motorische Lernen bei gesunden {\"a}lteren Probanden untersucht. Im Cross-over-Design wurde zu unterschiedlichen Zeitpunkten (vor bzw. nach der motorischen Aufgabe) stimuliert und im 24-Stunden-Verlauf die Langzeitwirkung evaluiert. Gruppe A erhielt vor einer motorischen {\"U}bungsaufgabe eine zerebell{\"a}re Stimulation, entweder als a-tDCS oder Scheinstimulation, Gruppe B nach der {\"U}bungsaufgabe. Zur {\"U}berpr{\"u}fung der Effekte auf das Sequenzlernen diente der Finger-Tapping-Task. Der Lernerfolg wurde anhand der Genauigkeit, der Sequenzdauer und des Skill-Index gemessen. Die Ergebnisse deuten darauf hin, dass eine zerebell{\"a}re a-tDCS vor einer {\"U}bungsaufgabe zu einer Verbesserung der Konsolidierung der F{\"a}higkeit, eine Zahlenfolge m{\"o}glichst schnell und gleichzeitig genau einzutippen, f{\"u}hrt, w{\"a}hrend die Stimulation nach einer {\"U}bungsaufgabe das motorische Lernen nicht zu beeinflussen scheint. Insgesamt st{\"u}tzen die Ergebnisse zum Teil die bisherigen Hinweise, dass eine zerebell{\"a}r applizierte a-tDCS das motorische Lernen verbessern kann. Aufgrund einiger Limitationen, besonders der geringen Gruppengr{\"o}ße, verbleibt dieses Ergebnis jedoch vorl{\"a}ufig und bedarf einer Best{\"a}tigung in gr{\"o}ßeren Probandengruppen. Es bleibt von hohem Interesse, die optimalen Bedingungen f{\"u}r die Anwendung von tDCS am Kleinhirn zu definieren, um motorische Lernprozesse positiv zu beeinflussen. Dies ist die Voraussetzung daf{\"u}r, zerebell{\"a}re tDCS mittelfristig auch zu therapeutischen Zwecken anwenden zu k{\"o}nnen.}, subject = {Motorisches Lernen}, language = {de} } @article{ErbacherVaknineMoshitzkyetal.2022, author = {Erbacher, Christoph and Vaknine, Shani and Moshitzky, Gilli and Lobentanzer, Sebastian and Eisenberg, Lina and Evdokimov, Dimitar and Sommer, Claudia and Greenberg, David S. and Soreq, Hermona and {\"U}{\c{c}}eyler, Nurcan}, title = {Distinct CholinomiR blood cell signature as a potential modulator of the cholinergic system in women with fibromyalgia syndrome}, series = {Cells}, volume = {11}, journal = {Cells}, number = {8}, issn = {2073-4409}, doi = {10.3390/cells11081276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270686}, year = {2022}, abstract = {Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson's disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression.}, language = {en} } @article{NguemeniHiewKoegleretal.2021, author = {Nguemeni, Carine and Hiew, Shawn and K{\"o}gler, Stefanie and Homola, Gy{\"o}rgy A. and Volkmann, Jens and Zeller, Daniel}, title = {Split-belt training but not cerebellar anodal tDCS improves stability control and reduces risk of fall in patients with multiple sclerosis}, series = {Brain Sciences}, volume = {12}, journal = {Brain Sciences}, number = {1}, issn = {2076-3425}, doi = {10.3390/brainsci12010063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252179}, year = {2021}, abstract = {The objective of this study was to examine the therapeutic potential of multiple sessions of training on a split-belt treadmill (SBT) combined with cerebellar anodal transcranial direct current stimulation (tDCS) on gait and balance in People with Multiple Sclerosis (PwMS). Twenty-two PwMS received six sessions of anodal (PwMS\(_{real}\), n = 12) or sham (PwMS\(_{sham}\), n = 10) tDCS to the cerebellum prior to performing the locomotor adaptation task on the SBT. To evaluate the effect of the intervention, functional gait assessment (FGA) scores and distance walked in 2 min (2MWT) were measured at the baseline (T0), day 6 (T5), and at the 4-week follow up (T6). Locomotor performance and changes of motor outcomes were similar in PwMS\(_{real}\) and PwMS\(_{sham}\) independently from tDCS mode applied to the cerebellum (anodal vs. sham, on FGA, p = 0.23; and 2MWT, p = 0.49). When the data were pooled across the groups to investigate the effects of multiple sessions of SBT training alone, significant improvement of gait and balance was found on T5 and T6, respectively, relative to baseline (FGA, p < 0.001 for both time points). The FGA change at T6 was significantly higher than at T5 (p = 0.01) underlining a long-lasting improvement. An improvement of the distance walked during the 2MWT was also observed on T5 and T6 relative to T0 (p = 0.002). Multiple sessions of SBT training resulted in a lasting improvement of gait stability and endurance, thus potentially reducing the risk of fall as measured by FGA and 2MWT. Application of cerebellar tDCS during SBT walking had no additional effect on locomotor outcomes.}, language = {en} } @article{JirůHillmannGabrielSchuleretal.2022, author = {J{\´i}rů-Hillmann, Steffi and Gabriel, Katharina M. A. and Schuler, Michael and Wiedmann, Silke and M{\"u}hler, Johannes and D{\"o}tter, Klaus and Soda, Hassan and Rascher, Alexandra and Benesch, Sonka and Kraft, Peter and Pfau, Mathias and Stenzel, Joachim and von Nippold, Karin and Benghebrid, Mohamed and Schulte, Kerstin and Meinck, Ralf and Volkmann, Jens and Haeusler, Karl Georg and Heuschmann, Peter U.}, title = {Experiences of family caregivers 3-months after stroke: results of the prospective trans-regional network for stroke intervention with telemedicine registry (TRANSIT-Stroke)}, series = {BMC Geriatrics}, volume = {22}, journal = {BMC Geriatrics}, doi = {10.1186/s12877-022-02919-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313330}, year = {2022}, abstract = {Background Long-term support of stroke patients living at home is often delivered by family caregivers (FC). We identified characteristics of stroke patients being associated with receiving care by a FC 3-months (3 M) after stroke, assessed positive and negative experiences and individual burden of FC caring for stroke patients and determined factors associated with caregiving experiences and burden of FC 3 M after stroke. Methods Data were collected within TRANSIT-Stroke, a regional telemedical stroke-network comprising 12 hospitals in Germany. Patients with stroke/TIA providing informed consent were followed up 3 M after the index event. The postal patient-questionnaire was accompanied by an anonymous questionnaire for FC comprising information on positive and negative experiences of FC as well as on burden of caregiving operationalized by the Caregiver Reaction Assessment and a self-rated burden-scale, respectively. Multivariable logistic and linear regression analyses were performed. Results Between 01/2016 and 06/2019, 3532 patients provided baseline and 3 M-follow-up- data and 1044 FC responded to questionnaires regarding positive and negative caregiving experiences and caregiving burden. 74.4\% of FC were older than 55 years, 70.1\% were women and 67.5\% were spouses. Older age, diabetes and lower Barthel-Index in patients were significantly associated with a higher probability of receiving care by a FC at 3 M. Positive experiences of FC comprised the importance (81.5\%) and the privilege (70.0\%) of caring for their relative; negative experiences of FC included financial difficulties associated with caregiving (20.4\%). Median overall self-rated burden was 30 (IQR: 0-50; range 0-100). Older age of stroke patients was associated with a lower caregiver burden, whereas younger age of FC led to higher burden. More than half of the stroke patients in whom a FC questionnaire was completed did self-report that they are not being cared by a FC. This stroke patient group tended to be younger, more often male with less severe stroke and less comorbidities who lived more often with a partner. Conclusions The majority of caregivers wanted to care for their relatives but experienced burden at the same time. Elderly patients, patients with a lower Barthel Index at discharge and diabetes are at higher risk of needing care by a family caregiver. Trial registration The study was registered at "German Clinical Trial Register": DRKS00011696. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML\&TRIAL_ID=DRKS00011696}, language = {en} } @article{BadrMcFlederWuetal.2022, author = {Badr, Mohammad and McFleder, Rhonda L. and Wu, Jingjing and Knorr, Susanne and Koprich, James B. and H{\"u}nig, Thomas and Brotchie, Jonathan M. and Volkmann, Jens and Lutz, Manfred B. and Ip, Chi Wang}, title = {Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice}, series = {Journal of Neuroinflammation}, volume = {19}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-022-02685-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300580}, year = {2022}, abstract = {Background Regulatory CD4\(^+\)CD25\(^+\)FoxP3\(^+\) T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. Methods Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. Results CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8\(^+\)CD69\(^+\) T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4\(^+\), CD8\(^+\) T cells and CD11b\(^+\) microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. Conclusions Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.}, language = {en} } @phdthesis{Aster2023, author = {Aster, Hans-Christoph}, title = {Characterization of subgroups in fibromyalgia syndrome}, doi = {10.25972/OPUS-31304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present cumulative dissertation summarizes three clinical studies, which examine subgroups of patients within the fibromyalgia syndrome (FMS). FMS entails chronic pain and associated symptoms, and its pathophysiology is incompletely understood (1). Previous studies show that there is a subgroup of patients with FMS with objective histological pathology of the small nerve fibers of the peripheral nervous system (PNS). Another subgroup of FMS patients does not show any signs of pathological changes of the small nerve fibers. The aim of this dissertation was to compare FMS patients with healthy controls, and these two FMS subgroups for differences in the central nervous system (CNS) in order to explore possible interactions between PNS and the CNS. Regarding the CNS, differences of FMS patients with healthy controls have already been found in studies with small sample sizes, but no subgroups have yet been identified. Another aim of this thesis was to test whether the subgroups show a different response to different classes of pain medication. The methods used in this thesis are structural and functional magnetic resonance imaging (MRI), magnetic resonance diffusion imaging and magnetic resonance spectroscopy. For the evaluation of clinical symptoms, we used standardized questionnaires. The subgroups with and without pathologies of the PNS were determined by skin biopsies of the right thigh and lower leg based on the intraepidermal nerve fiber density (IENFD) of the small nerve fibers. 1) In the first MRI study, 43 female patients with the diagnosis of FMS and 40 healthy control subjects, matched in age and body mass index, were examined with different MRI sequences. Cortical thickness was investigated by structural T1 imaging, white matter integrity by diffusion tensor imaging and functional connectivity within neuronal networks by functional resting state MRI. Compared to the controls, FMS patients had a lower cortical volume in bilateral frontotemporoparietal regions and the left insula, but a higher cortical volume in the left pericalcarine cortex. Compared to the subgroup without PNS pathology, the subgroup with PNS pathology had lower cortical volume in both pericalcarine cortices. Diffusion tensor imaging revealed an increased fractional anisotropy (FA) of FMS patients in corticospinal pathways such as the corona radiata, but also in regions of the limbic systems such as the fornix and cingulum. Subgroup comparison again revealed lower mean FA values of the posterior thalamic radiation and the posterior limb of the left internal capsule in the subgroup with PNS pathology. In the functional connectivity analysis FMS patients, compared to controls, showed a hypoconnectivity between the right median frontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. In the subgroup comparisons, the subgroup with PNS pathology showed a hyperconnectivity between both inferior frontal gyri, the right posterior parietal cortex and the right angular gyrus. In summary, these results show that differences in brain morphology and functional connectivity exist between FMS patients with and without PNS pathology. These differences were not associated with symptom duration or severity and, in some cases, have not yet been described in the context of FMS. The differences in brain morphology and connectivity between subgroups could also lead to a differential response to treatment with centrally acting drugs. Further imaging studies with FMS patients should take into account this heterogeneity of FMS patient cohorts. 2) Following the results from the first MRI study, drug therapies of FMS patients and their treatment response were compared between PNS subgroups. As there is no licensed drug for FMS in Europe, the German S3 guideline recommends amitriptyline, duloxetine and pregabalin for temporary use. In order to examine the current drug use in FMS patients in Germany on a cross-sectional basis, 156 patients with FMS were systematically interviewed. The drugs most frequently used to treat pain in FMS were non-steroidal anti-inflammatory drugs (NSAIDs) (28.9\%), metamizole (15.4\%) and amitriptyline (8.8\%). Pain relief assessed by patients on a numerical rating scale from 0-10 averaged 2.2 points for NSAIDs, 2.0 for metamizole and 1.5 for amitriptyline. Drugs that were discontinued for lack of efficacy and not for side effects were acetaminophen (100\%), flupirtine (91.7\%), selective serotonin reuptake inhibitors (81.8\%), NSAIDs (83.7\%) and weak opioids (74.1\%). Patients were divided into subgroups with and without PNS pathology as determined by skin biopsies. We found no differences in drug use and effect between the subgroups. Taken together, these results show that many FMS patients take medication that is not in accordance with the guidelines. The reduction of symptoms was best achieved with metamizole and NSAIDs. Further longitudinal studies on medication in FMS are necessary to obtain clearer treatment recommendations. 3) Derived from previous pharmacological and imaging studies (with smaller case numbers), there is a hypothesis in the FMS literature that hyperreactivity of the insular cortex may have an impact on FMS. The hyperreactivity seems to be due to an increased concentration of the excitatory neurotransmitter glutamate in the insular cortex of FMS patients. The hypothesis is supported by magnetic resonance spectroscopy studies with small number of cases, as well as results from pharmacological studies with glutamate-inhibiting medication. Studies from animal models have also shown that an artificially induced increase in glutamate in the insular cortex can lead to reduced skin innervation. Therefore, the aim of this study was to compare glutamate and GABA concentrations in the insular cortex of FMS patients with those of healthy controls using magnetic resonance imaging. There was no significant difference of both neurotransmitters between the groups. In addition, there was no correlation between the neurotransmitter concentrations and the severity of clinical symptoms. There were also no differences in neurotransmitter concentrations between the subgroups with and without PNS pathology. In conclusion, our study could not show any evidence of a correlation of glutamate and GABA concentrations with the symptoms of FMS or the pathogenesis of subgroups with PNS pathologies.}, subject = {Fibromyalgie}, language = {en} } @article{UeceylerSchliesserEvdokimovetal.2022, author = {{\"U}{\c{c}}eyler, Nurcan and Schließer, Mira and Evdokimov, Dimitar and Radziwon, Jakub and Feulner, Betty and Unterecker, Stefan and Rimmele, Florian and Walter, Uwe}, title = {Reduced midbrain raphe echogenicity in patients with fibromyalgia syndrome}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {11}, doi = {10.1371/journal.pone.0277316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300639}, year = {2022}, abstract = {Objectives The pathogenesis of fibromyalgia syndrome (FMS) is unclear. Transcranial ultrasonography revealed anechoic alteration of midbrain raphe in depression and anxiety disorders, suggesting affection of the central serotonergic system. Here, we assessed midbrain raphe echogenicity in FMS. Methods Sixty-six patients underwent transcranial sonography, of whom 53 were patients with FMS (27 women, 26 men), 13 patients with major depression and physical pain (all women), and 14 healthy controls (11 women, 3 men). Raphe echogenicity was graded visually as normal or hypoechogenic, and quantified by digitized image analysis, each by investigators blinded to the clinical diagnosis. Results Quantitative midbrain raphe echogenicity was lower in patients with FMS compared to healthy controls (p<0.05), but not different from that of patients with depression and accompanying physical pain. Pain and FMS symptom burden did not correlate with midbrain raphe echogenicity as well as the presence and severity of depressive symptoms. Conclusion We found reduced echogenicity of the midbrain raphe area in patients with FMS and in patients with depression and physical pain, independent of the presence or severity of pain, FMS, and depressive symptoms. Further exploration of this sonographic finding is necessary before this objective technique may enter diagnostic algorithms in FMS and depression.}, language = {en} } @article{PolatWohllebenKosmalaetal.2022, author = {Polat, B{\"u}lent and Wohlleben, Gisela and Kosmala, Rebekka and Lisowski, Dominik and Mantel, Frederick and Lewitzki, Victor and L{\"o}hr, Mario and Blum, Robert and Herud, Petra and Flentje, Michael and Monoranu, Camelia-Maria}, title = {Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma}, series = {Cancer Cell International}, volume = {22}, journal = {Cancer Cell International}, issn = {1475-2867}, doi = {10.1186/s12935-022-02510-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301240}, year = {2022}, abstract = {Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan-Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation.}, language = {en} } @article{TraubOttoSelletal.2022, author = {Traub, Jan and Otto, Markus and Sell, Roxane and G{\"o}pfert, Dennis and Homola, Gy{\"o}rgy and Steinacker, Petra and Oeckl, Patrick and Morbach, Caroline and Frantz, Stefan and Pham, Mirko and St{\"o}rk, Stefan and Stoll, Guido and Frey, Anna}, title = {Serum phosphorylated tau protein 181 and neurofilament light chain in cognitively impaired heart failure patients}, series = {Alzheimer's Research \& Therapy}, volume = {14}, journal = {Alzheimer's Research \& Therapy}, doi = {10.1186/s13195-022-01087-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300515}, year = {2022}, abstract = {Background Chronic heart failure (HF) is known to increase the risk of developing Alzheimer's dementia significantly. Thus, detecting and preventing mild cognitive impairment, which is common in patients with HF, is of great importance. Serum biomarkers are increasingly used in neurological disorders for diagnostics, monitoring, and prognostication of disease course. It remains unclear if neuronal biomarkers may help detect cognitive impairment in this high-risk population. Also, the influence of chronic HF and concomitant renal dysfunction on these biomarkers is not well understood. Methods Within the monocentric Cognition.Matters-HF study, we quantified the serum levels of phosphorylated tau protein 181 (pTau) and neurofilament light chain (NfL) of 146 extensively phenotyped chronic heart failure patients (aged 32 to 85 years; 15.1\% women) using ultrasensitive bead-based single-molecule immunoassays. The clinical work-up included advanced cognitive testing and cerebral magnetic resonance imaging (MRI). Results Serum concentrations of NfL ranged from 5.4 to 215.0 pg/ml (median 26.4 pg/ml) and of pTau from 0.51 to 9.22 pg/ml (median 1.57 pg/ml). We detected mild cognitive impairment (i.e., T-score < 40 in at least one cognitive domain) in 60\% of heart failure patients. pTau (p = 0.014), but not NfL, was elevated in this group. Both NfL (ρ = - 0.21; p = 0.013) and pTau (ρ = - 0.25; p = 0.002) related to the cognitive domain visual/verbal memory, as well as white matter hyperintensity volume and cerebral and hippocampal atrophy. In multivariable analysis, both biomarkers were independently influenced by age (T = 4.6 for pTau; T = 5.9 for NfL) and glomerular filtration rate (T = - 2.4 for pTau; T = - 3.4 for NfL). Markers of chronic heart failure, left atrial volume index (T = 4.6) and NT-proBNP (T = 2.8), were further cardiological determinants of pTau and NfL, respectively. In addition, pTau was also strongly affected by serum creatine kinase levels (T = 6.5) and ferritin (T = - 3.1). Conclusions pTau and NfL serum levels are strongly influenced by age-dependent renal and cardiac dysfunction. These findings point towards the need for longitudinal examinations and consideration of frequent comorbidities when using neuronal serum biomarkers.}, language = {en} } @article{FriedrichHartigPruessetal.2022, author = {Friedrich, Maximilian and Hartig, Johannes and Pr{\"u}ss, Harald and Ip, Wang Chi and Volkmann, Jens}, title = {Rapidly progressive dementia: Extending the spectrum of GFAP-astrocytopathies?}, series = {Annals of Clinical and Translational Neurology}, volume = {9}, journal = {Annals of Clinical and Translational Neurology}, number = {3}, doi = {10.1002/acn3.51513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312957}, pages = {410-415}, year = {2022}, abstract = {Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a steroid-responsive meningoencephalomyelitis, sometimes presenting with atypical clinical signs such as movement disorders or psychiatric and autonomic features. Beyond clinical presentation and imaging, diagnosis relies on detection of GFAP-antibodies (AB) in CSF. Using quantitative behavioral, serologic, and immunohistochemical analyses, we characterize two patients longitudinally over 18-24 months who presented with rapidly progressive neurocognitive deterioration in the context of GFAP-AB in CSF and unremarkable cranial MRI studies. Intensified immunotherapy was associated with clinical stabilization. The value of GFAP-AB screening in selected cases of rapidly progressive dementias is discussed.}, language = {en} } @article{KraemerSchuhmannVolkmannetal.2022, author = {Kr{\"a}mer, Stefanie D. and Schuhmann, Michael K. and Volkmann, Jens and Fluri, Felix}, title = {Deep brain stimulation in the subthalamic nucleus can improve skilled Forelimb movements and retune dynamics of striatal networks in a rat stroke model}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {24}, doi = {10.3390/ijms232415862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312828}, year = {2022}, abstract = {Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[\(^{18}\)F]Fluoro-2-deoxyglucose-([\(^{18}\)F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [\(^{18}\)F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [\(^{18}\)F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.}, language = {en} } @article{WagenhaeuserRickertSommeretal.2022, author = {Wagenh{\"a}user, Laura and Rickert, Vanessa and Sommer, Claudia and Wanner, Christoph and Nordbeck, Peter and Rost, Simone and {\"U}{\c{c}}eyler, Nurcan}, title = {X-chromosomal inactivation patterns in women with Fabry disease}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {9}, doi = {10.1002/mgg3.2029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312795}, year = {2022}, abstract = {Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45\%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25\% distribution) in 6/87 (7\%) mouth epithelial cell samples, 31/88 (35\%) blood samples, and 9/27 (33\%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns.}, language = {en} } @article{NeugebauerSchneiderKollmar2019, author = {Neugebauer, Hermann and Schneider, Hauke and Kollmar, Rainer}, title = {Letter by Neugebauer et al. regarding article "Hypothermia after decompressive hemicraniectomy in treatment of malignant middle cerebral artery stroke: comment on the randomized clinical trial"}, series = {Critical Care}, volume = {23}, journal = {Critical Care}, doi = {10.1186/s13054-019-2600-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232268}, year = {2019}, abstract = {No abstract available.}, language = {en} } @article{TraubOttoSelletal.2022, author = {Traub, Jan and Otto, Markus and Sell, Roxane and Homola, Gy{\"o}rgy A. and Steinacker, Petra and Oeckl, Patrick and Morbach, Caroline and Frantz, Stefan and Pham, Mirko and St{\"o}rk, Stefan and Stoll, Guido and Frey, Anna}, title = {Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure}, series = {ESC Heart Failure}, volume = {9}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312736}, pages = {2626-2634}, year = {2022}, abstract = {Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead-based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters-HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty-six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1\% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = -4.7; P < 0.001), alanine aminotransferase (T = -2.1; P = 0.036), and the left atrial end-systolic volume index (T = 3.4; P = 0.004). NT-proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = -3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF.}, language = {en} } @article{LauUeceylerCairnsetal.2022, author = {Lau, Kolja and {\"U}{\c{c}}eyler, Nurcan and Cairns, Tereza and Lorenz, Lora and Sommer, Claudia and Schindeh{\"u}tte, Magnus and Amann, Kerstin and Wanner, Christoph and Nordbeck, Peter}, title = {Gene variants of unknown significance in Fabry disease: Clinical characteristics of c.376AG (p.Ser126Gly)}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {5}, doi = {10.1002/mgg3.1912}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312817}, year = {2022}, abstract = {Background Anderson-Fabry disease (FD) is an X-linked lysosomal storage disorder with varying organ involvement and symptoms, depending on the underlying mutation in the alpha-galactosidase A gene (HGNC: GLA). With genetic testing becoming more readily available, it is crucial to precisely evaluate pathogenicity of each genetic variant, in order to determine whether there is or might be not a need for FD-specific therapy in affected patients and relatives at the time point of presentation or in the future. Methods This case series investigates the clinical impact of the specific GLA gene variant c.376A>G (p.Ser126Gly) in five (one heterozygous and one homozygous female, three males) individuals from different families, who visited our center between 2009 and 2021. Comprehensive neurological, nephrological and cardiac examinations were performed in all cases. One patient received a follow-up examination after 12 years. Results Index events leading to suspicion of FD were mainly unspecific neurological symptoms. However, FD-specific biomarkers, imaging examinations (i.e., brain MRI, heart MRI), and tissue-specific diagnostics, including kidney and skin biopsies, did not reveal evidence for FD-specific symptoms or organ involvement but showed normal results in all cases. This includes findings from 12-year follow-up in one patient with renal biopsy. Conclusion These findings suggest that p.Ser126Gly represents a benign GLA gene variant which per se does not cause FD. Precise clinical evaluation in individuals diagnosed with genetic variations of unknown significance should be performed to distinguish common symptoms broadly prevalent in the general population from those secondary to FD.}, language = {en} } @article{PalmisanoBeccariaHaufeetal.2022, author = {Palmisano, Chiara and Beccaria, Laura and Haufe, Stefan and Volkmann, Jens and Pezzoli, Gianni and Isaias, Ioannis U.}, title = {Gait initiation impairment in patients with Parkinson's disease and freezing of gait}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {11}, issn = {2306-5354}, doi = {10.3390/bioengineering9110639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297579}, year = {2022}, abstract = {Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.}, language = {en} } @article{TraubGrondeyGassenmaieretal.2022, author = {Traub, Jan and Grondey, Katja and Gassenmaier, Tobias and Schmitt, Dominik and Fette, Georg and Frantz, Stefan and Boivin-Jahns, Val{\´e}rie and Jahns, Roland and St{\"o}rk, Stefan and Stoll, Guido and Reiter, Theresa and Hofmann, Ulrich and Weber, Martin S. and Frey, Anna}, title = {Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288261}, year = {2022}, abstract = {Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11\% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0-4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.}, language = {en} } @article{HaarmannZimmermannBieberetal.2022, author = {Haarmann, Axel and Zimmermann, Lena and Bieber, Michael and Silwedel, Christine and Stoll, Guido and Schuhmann, Michael K.}, title = {Regulation and release of vasoactive endoglin by brain endothelium in response to hypoxia/reoxygenation in stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {13}, issn = {1422-0067}, doi = {10.3390/ijms23137085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284361}, year = {2022}, abstract = {In large vessel occlusion stroke, recanalization to restore cerebral perfusion is essential but not necessarily sufficient for a favorable outcome. Paradoxically, in some patients, reperfusion carries the risk of increased tissue damage and cerebral hemorrhage. Experimental and clinical data suggest that endothelial cells, representing the interface for detrimental platelet and leukocyte responses, likely play a crucial role in the phenomenon referred to as ischemia/reperfusion (I/R)-injury, but the mechanisms are unknown. We aimed to determine the role of endoglin in cerebral I/R-injury; endoglin is a membrane-bound protein abundantly expressed by endothelial cells that has previously been shown to be involved in the maintenance of vascular homeostasis. We investigated the expression of membranous endoglin (using Western blotting and RT-PCR) and the generation of soluble endoglin (using an enzyme-linked immunosorbent assay of cell culture supernatants) after hypoxia and subsequent reoxygenation in human non-immortalized brain endothelial cells. To validate these in vitro data, we additionally examined endoglin expression in an intraluminal monofilament model of permanent and transient middle cerebral artery occlusion in mice. Subsequently, the effects of recombinant human soluble endoglin were assessed by label-free impedance-based measurement of endothelial monolayer integrity (using the xCELLigence DP system) and immunocytochemistry. Endoglin expression is highly inducible by hypoxia in human brain endothelial monolayers in vitro, and subsequent reoxygenation induced its shedding. These findings were corroborated in mice during MCAO; an upregulation of endoglin was displayed in the infarcted hemispheres under occlusion, whereas endoglin expression was significantly diminished after transient MCAO, which is indicative of shedding. Of note is the finding that soluble endoglin induced an inflammatory phenotype in endothelial monolayers. The treatment of HBMEC with endoglin resulted in a decrease in transendothelial resistance and the downregulation of VE-cadherin. Our data establish a novel mechanism in which hypoxia triggers the initial endothelial upregulation of endoglin and subsequent reoxygenation triggers its release as a vasoactive mediator that, when rinsed into adjacent vascular beds after recanalization, can contribute to cerebral reperfusion injury.}, language = {en} } @article{SpitzelWagnerBreyeretal.2022, author = {Spitzel, Marlene and Wagner, Elise and Breyer, Maximilian and Henniger, Dorothea and Bayin, Mehtap and Hofmann, Lukas and Mauceri, Daniela and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275186}, year = {2022}, abstract = {Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.}, language = {en} } @article{SchulteBlum2022, author = {Schulte, Annemarie and Blum, Robert}, title = {Shaped by leaky ER: Homeostatic Ca\(^{2+}\) fluxes}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.972104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287102}, year = {2022}, abstract = {At any moment in time, cells coordinate and balance their calcium ion (Ca\(^{2+}\)) fluxes. The term 'Ca\(^{2+}\) homeostasis' suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca\(^{2+}\) imaging shows that resting Ca\(^{2+}\) levels are maintained by surprisingly dynamic Ca\(^{2+}\) fluxes between the ER Ca\(^{2+}\) store, the cytosol, and the extracellular space. The data show that the ER Ca\(^{2+}\) leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca\(^{2+}\) dynamics. Based on simplistic Ca\(^{2+}\) toolkit models, we discuss how the ER Ca\(^{2+}\) leak could contribute to evolutionarily conserved Ca\(^{2+}\) phenomena such as Ca\(^{2+}\) entry, ER Ca\(^{2+}\) release, and Ca\(^{2+}\) oscillations.}, language = {en} } @phdthesis{Yuan2023, author = {Yuan, Xidi}, title = {Aging and inflammation in the peripheral nervous system}, doi = {10.25972/OPUS-23737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237378}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Aging is known to be a risk factor for structural abnormalities and functional decline in the nervous system. Characterizing age-related changes is important to identify putative pathways to overcome deleterious effects and improve life quality for the elderly. In this study, the peripheral nervous system of 24-month-old aged C57BL/6 mice has been investigated and compared to 12-month-old adult mice. Aged mice showed pathological alterations in their peripheral nerves similar to nerve biopsies from elderly human individuals, with nerve fibers showing demyelination and axonal damage. Such changes were lacking in nerves of adult 12-month-old mice and adult, non-aged humans. Moreover, neuromuscular junctions of 24-month-old mice showed increased denervation compared to adult mice. These alterations were accompanied by elevated numbers of macrophages in the peripheral nerves of aged mice. The neuroinflammatory conditions were associated with impaired myelin integrity and with a decline of nerve conduction properties and muscle strength in aged mice. To determine the pathological impact of macrophages in the aging mice, macrophage depletion was performed in mice by oral administration of CSF-1R specific kinase (c-FMS) inhibitor PLX5622 (300 mg/kg body weight), which reduced the number of macrophages in the peripheral nerves by 70\%. The treated mice showed attenuated demyelination, less muscle denervation and preserved muscle strength. This indicates that macrophage-driven inflammation in the peripheral nerves is partially responsible for the age-related neuropathy in mice. Based on previous observations that systemic inflammation can accelerate disease progression in mouse models of neurodegenerative diseases, it was hypothesized that systemic inflammation can exacerbate the peripheral neuropathy found in aged mice. To investigate this hypothesis, aged C57BL/6 mice were intraperitoneally injected with a single dose of lipopolysaccharide (LPS; 500 μg/kg body weight) to induce systemic inflammation by mimicking bacterial infection, mostly via activation of Toll-like receptors (TLRs). Altered endoneurial macrophage activation, highlighted by Trem2 downregulation, was found in LPS injected aged mice one month after injection. This was accompanied by a so far rarely observed form of axonal perturbation, i.e., the occurrence of "dark axons" characterized by a damaged cytoskeleton and an increased overall electron density of the axoplasm. At the same time, however, LPS injection reduced demyelination and muscle denervation in aged mice. Interestingly, TREM2 deficiency in aged mice led to similar changes to LPS injection. This suggests that LPS injection likely mitigates aging-related demyelination and muscle denervation via Trem2 downregulation. Taken together, this study reveals the role of macrophage-driven inflammation as a pathogenic mediator in age-related peripheral neuropathy, and that targeting macrophages might be an option to mitigate peripheral neuropathies in aging individuals. Furthermore, this study shows that systemic inflammation may be an ambivalent modifier of age-related nerve damage, leading to a distinct type of axonal perturbation, but in addition to functionally counteracting, dampened demyelination and muscle denervation. Translationally, it is plausible to assume that tipping the balance of macrophage polarization to one direction or the other may determine the functional outcome in the aging peripheral nervous system of the elderly.}, subject = {Maus}, language = {en} }