@article{RauchFuchsFriedrichetal.2020, author = {Rauch, Florian and Fuchs, Sonja and Friedrich, Alexandra and Sieh, Daniel and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9-Borafluorenes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {56}, doi = {10.1002/chem.201905559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218390}, pages = {12794 -- 12808}, year = {2020}, abstract = {Three different perfluoroalkylated borafluorenes (\(^{F}\)Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton \(^{F}\)Xyl\(^{F}\)Bf, \(^{F}\)Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (\(^{F}\)Mes\(^{F}\)Bf, \(^{F}\)Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe\(_{2}\)-\(^{F}\)Xyl\(^{F}\)Bf, p-NMe\(_{2}\)-\(^{F}\)Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative \(^{F}\)Mes\(^{F}\)Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe\(_{2}\)-\(^{F}\)Xyl\(^{F}\)Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the \(^{F}\)Mes\(^{F}\)Bf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.}, language = {en} } @article{TenderaLuffKrummenacheretal.2022, author = {Tendera, Lukas and Luff, Martin S. and Krummenacher, Ivo and Radius, Udo}, title = {Cationic Nickel d\(^{9}\)-Metalloradicals [Ni(NHC)\(_{2}\)]\(^{+}\)}, series = {European Journal of Inorganic Chemistry}, volume = {2022}, journal = {European Journal of Inorganic Chemistry}, number = {31}, doi = {10.1002/ejic.202200416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293702}, year = {2022}, abstract = {A series of five new homoleptic, linear nickel d\(^{9}\)-complexes of the type [Ni\(^{I}\)(NHC)\(_{2}\)]\(^{+}\) is reported. Starting from the literature known Ni(0) complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1, [Ni(Mes\(_{2}\)Im\(^{H2}\))2] 2, [Ni(Dipp\(_{2}\)Im)\(_{2}\)] 3, [Ni(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)] 4 and [Ni(cAAC\(^{Me}\))\(_{2}\)] 5 (Mes\(_{2}\)Im=1,3-bis(2,4,6-trimethylphenyl)-imidazolin-2-ylidene, Mes\(_{2}\)Im\(^{H2}\)=1,3-bis(2,4,6-trimethylphenyl)-imidazolidin-2-ylidene, Dipp\(_{2}\)Im=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene, Dipp\(_{2}\)Im\(^{H2}\)=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene, cAAC\(^{Me}\)=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-yliden), their oxidized Ni(I) analogues [Ni\(^{I}\)(Mes\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 1\(^{+}\), [Ni\(^{I}\)(Mes\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 2\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 3\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 4\(^{+}\) and [Ni\(^{I}\)(cAAC\(^{Me}\))\(_{2}\)][BPh\(_{4}\)] 5\(^{+}\) were synthesized by one-electron oxidation with ferrocenium tetraphenyl-borate. The complexes 1\(^{+}\)-5\(^{+}\) were fully characterized including X-ray structure analysis. The complex cations reveal linear geometries in the solid state and NMR spectra with extremely broad, paramagnetically shifted resonances. DFT calculations predicted an orbitally degenerate ground state leading to large magnetic anisotropy, which was verified by EPR measurements in solution and on solid samples. The magnetic anisotropy of the complexes is highly dependent from the steric protection of the metal atom, which results in a noticeable decrease of the g-tensor anisotropy for the N-Mes substituted complexes 1\(^{+}\) and 2\(^{+}\) in solution due to the formation of T-shaped THF adducts.}, language = {en} }