@article{SchmidtHolzgrabe2024, author = {Schmidt, Sebastian and Holzgrabe, Ulrike}, title = {Do the enantiomers of ketamine bind enantioselectively to human serum albumin?}, series = {European Journal of Pharmaceutical Sciences}, volume = {192}, journal = {European Journal of Pharmaceutical Sciences}, doi = {10.1016/j.ejps.2023.106640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349791}, year = {2024}, abstract = {The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 \% and 64.9 \% for enantiomerically pure R- and S-ketamine, respectively, and 66.5 \% for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pK\(_{aff}\) values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate.}, language = {en} } @article{SchmidtZeheHolzgrabe2023, author = {Schmidt, Sebastian and Zehe, Markus and Holzgrabe, Ulrike}, title = {Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein}, series = {European Journal of Pharmaceutical Sciences}, volume = {181}, journal = {European Journal of Pharmaceutical Sciences}, doi = {10.1016/j.ejps.2022.106333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300848}, year = {2023}, abstract = {Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine.}, language = {en} } @article{ShahBulittaKinzigetal.2019, author = {Shah, Nirav R. and Bulitta, J{\"u}rgen B. and Kinzig, Martina and Landersdorfer, Cornelia B. and Jiao, Yuanyuan and Sutaria, Dhruvitkumar S. and Tao, Xun and H{\"o}hl, Rainer and Holzgrabe, Ulrike and Kees, Frieder and Stephan, Ulrich and S{\"o}rgel, Fritz}, title = {Novel population pharmacokinetic approach to explain the differences between cystic fibrosis patients and healthy volunteers via protein binding}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {6}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11060286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196934}, year = {2019}, abstract = {The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound β-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for β-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3\% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50\% in male and estimated as 54.5\% in female healthy volunteers as well as 56.3\% in male and 74.4\% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding.}, language = {en} }