@phdthesis{Grun2006, author = {Grun, Christoph}, title = {Untersuchung enzymatisch und nicht-enzymatisch gebildeter Oxylipine in Arabidopsis thaliana in der kompatiblen und der inkompatiblen Interaktion mit Pseudomonas syringae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20804}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {1. OH-FS wurden in vitro hergestellt, um als Standardsubstanzen zur gaschromato-graphischen Identifizierung von OH-FS in Pflanzenmaterial eingesetzt zu werden. 2. F{\"u}r die Untersuchung der Oxylipin-Gehalte in A. thaliana wurden der virulente Pst-Stamm DC3000 sowie der avirulente Stamm avrRPM1 verwendet, um die kompatible Interaktion mit der inkompatiblen Interaktion vergleichen zu k{\"o}nnen. Die Konzentrationen der Oxylipine sowie SA wurden innerhalb einer Versuchsdauer von 60 h verfolgt. Dabei wurden PPF1 sowie 12- und 16-OH-FS, als Vertreter der nicht-enzymatisch entstandenen Oxylipine, 9- und 13-OH-FS, sowohl als enzymatisch als auch nicht-enzymatisch entstandene Oxylipine, sowie JA und deren Vorstufe OPDA als enzymatisch gebildete Phytohormone untersucht. Es wurden monophasische Konzentrationsanstiege, bei allen untersuchten Substanzen, in der kompatiblen Interaktion ermittelt, wohingegen die Konzentrationsanstiege in der inkompatiblen Interaktion biphasisch waren. In beiden Interaktionen wurden nach 48 bis 60 h Konzentrationsmaxima der freien sowie der veresterten OH-FS und PPF1 nachgewiesen, ein fr{\"u}her Konzentrationsanstieg nach 5 bis 10 h konnte ausschließlich in der inkompatiblen Interaktion ermittelt werden. Die gleichzeitige Akkumulation von 9-, 10-, 12-, 13, 15- und 16-OH-FS und PPF1 deutet auf eine parallel ablaufende Oxylipin-Synthese durch enzymatische, Photo-oxidative und {\"u}ber freie Radikale vermittelte Prozesse hin. Die Akkumulation veresterter OH-FS und PPF1 erfolgte in beiden Interaktionen 5 bis 12 h fr{\"u}her als die Konzentrationsanstiege der freien OH-FS und PPF1. Die Ergebnisse best{\"a}tigen die Hypothese, dass nicht-enzymatische Oxylipine in Membranen gebildet werden k{\"o}nnen und anschließend vermutlich durch eine Lipase frei gesetzt werden. In der inkompatiblen Interaktion konnte ein erstes fr{\"u}hes Konzentrationsmaximum von JA und OPDA nach 5 h beobachtet werden, w{\"a}hrend sp{\"a}te Maxima in beiden Interaktionen nach 24 bis 36 h erfolgten. Somit akkumulierten die OH-FS und PPF1 in der inkompatiblen Interaktion zeitgleich mit den Jasmonaten nach 5 h. 3. Bei einer K{\"a}lteexposition von A. thaliana bei 4°C {\"u}ber 2 h wurde jeweils ein 3,3-facher Konzentrationsanstieg der freien und der veresterten enzymatisch gebildeten 13-OH-FS nachgewiesen. Dar{\"u}berhinaus wurde ein 4,6-facher Anstieg der enzymatisch entstandenen 9-OH-FS ermittelt. Die nicht-enzymatisch gebildeten 12- und 16-OH-FS zeigten dagegen keine signifikanten Konzentrationsanstiege {\"u}ber die basalen Konzentrationen hinaus. Die angewendeten Stressbedingungen bewirken demnach ausschließlich eine enzymatische Bildung von OH-FS in A. thaliana. 4. Zur Untersuchung der OH-FS-Synthese in der inkompatiblen Interaktion in Abh{\"a}ngigkeit von der bei der Pflanzenanzucht eingesetzten Lichtst{\"a}rke wurden A. thaliana bei Licht und in Dunkelheit mit Pst avrRPM1 infiziert. Nach 10 h wurde eine 1,1- bis 3,7-fach st{\"a}rkere Bildung der freien sowie eine 2,0- bis 3,4-fach st{\"a}rkere Akkumulation der veresterten 9-, 10-, 12-, 13, 15- und 16-OH-FS bei den Pflanzen ermittelt, die bei Licht angezogen wurden. Die Lichtintensit{\"a}t, der Pflanzen w{\"a}hrend der Infektion mit Pst ausgesetzt sind, hat demnach große Bedeutung f{\"u}r die Entstehung enzymatisch und nicht-enzymatisch gebildeter OH-FS. Ein 4,9-facher Anstieg veresterter 15-OH-FS, ein Marker f{\"u}r eine photooxidative OH-FS-Entstehung, auch bei Dunkelheit widersprach der Hypothese, dass 15-OH-FS ohne Lichteinwirkung nicht gebildet werden k{\"o}nnen und deutet auf eine bisher unbekannte Licht-unabh{\"a}ngige Entstehung von 1O2 bzw. von 15-OH-FS hin. 5. Die Bestimmung von OH-FS in Bl{\"a}ttern und Wurzeln von unbehandelten A. thaliana-Pflanzen ergab eine 13- bis 31-fach h{\"o}here Konzentration veresterter 9-, 10-, 12-, 13- und 16-OH-FS in den Bl{\"a}ttern. Dar{\"u}berhinaus wurde eine 111-fach h{\"o}here Konzentration von veresterten 15-OH-FS in Bl{\"a}ttern im Vergleich zu Wurzeln nachgewiesen. 15-OH-FS wurden als selektiver Marker f{\"u}r eine Photo-oxidative OH-FS-Bildung durch 1O2 verwendet. Mit 0,57 µg/g TG kommt 15-OH-FS allerdings auch im Wurzelgewebe vor, was einen Hinweis darauf darstellt, dass neben einem Licht-abh{\"a}ngigen Hauptweg auch ein Licht-unabh{\"a}ngiger Entstehungsmechanismus von 15-OH-FS bzw. 1O2 existiert. Alternativ w{\"a}re es denkbar, dass ein Transport von 15-OH-FS von den Bl{\"a}ttern in die Wurzeln stattfindet. 6. Eine Untersuchung der Gehalte an OH-FS und PPF1 in NahG-, lsd1-, atrbohD- und atrbohF-Mutanten ergab 48 h nach Infiltration von Pst avrRPM1 keine signifikanten Unterschiede im Vergleich zu den Pflanzen des jeweiligen Wildtyps Col-0 und WS. Unter den gew{\"a}hlten Versuchsbedingungen bewirken die genetischen Defekte der untersuchten Mutanten keine ver{\"a}nderte Akkumulation enzymatisch sowie nicht-enzymatisch gebildeter Oxylipine.}, subject = {Lipid-Peroxide}, language = {de} } @phdthesis{Karg2006, author = {Karg, Kathrin}, title = {Analyse biologisch aktiver, oxidierter Lipide in Pflanzen und Menschen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Durch freie, radikalkatalysierte Oxidation von Linolens{\"a}ure k{\"o}nnen in vitro und in vivo meh-rere Klassen von Phytoprostanen gebildet werden. Im Rahmen der vorliegenden Arbeit wur-den Phytoprostane in Pflanzenmaterial (Bl{\"a}ttern, Bl{\"u}tenpollen), Speise{\"o}len sowie in mensch-lichen K{\"o}rperfl{\"u}ssigkeiten (Blut und Urinproben) untersucht. Zus{\"a}tzlich wurden neue Metho-den entwickelt, um Phytohormone sowie verschiedene Metabolite des pflanzlichen Prim{\"a}r- und Sekund{\"a}rstoffwechsels zusammen mit einer gemeinsamen Aufarbeitung erfassen und bestimmen zu k{\"o}nnen. Bl{\"u}tenpollen enthalten mehrere mmol/g an Phytoprostanen, darunter PPA1/PPB1, PPE1 und PPF1. Physiologisch relevant sind jedoch nur die Mengen, die sich nach Extraktion in einem w{\"a}ssrigen Puffer wiederfinden lassen. Deshalb wurden hier erstmals w{\"a}ssrige Extrakte von Birkenpollen untersucht. In diesen befanden sich durchschnittlich 60 nmol PPE1 und 10 nmol PPF1 pro g extrahiertem Pollen. Pflanzen{\"o}le enthalten a-Linolens{\"a}ure bis zu einem Gewichtsanteil von 56 \% (m/m). In Spei-se{\"o}len aus ausgesuchten Pflanzenarten (Lein{\"o}l, Soja{\"o}l, Oliven{\"o}l), Walnuss{\"o}l, Traubenkern{\"o}l) und parenteraler Nahrung (Intralipid) wurden die Phytoprostanklassen A1, B1, D1, E1, F1 und deoxy-J1 nachgewiesen und quantifiziert. In frischen {\"O}len wurden große Mengen an Phy-toprostanen (0,4 - 101 mg/g {\"O}l) gefunden, welche teilweise frei und teilweise verestert vorla-gen. Der absolute Phytoprostangehalt der {\"O}le nahm in folgender Reihe ab: Lein{\"o}l » Soja{\"o}l > Oliven{\"o}l > Walnuss{\"o}l > Raps{\"o}l >> Traubenkern{\"o}l. (a-Tocopherol). In allen untersuchten {\"O}-len dominierten entweder PPE1 oder PPF1 als h{\"a}ufigste Phytoprostanklasse. PPA1 und PPB1 waren lediglich als untergeordnete Bestandteile enthalten. PPD1 und dPPJ1 konnten nur in sehr geringen Mengen gefunden werden. Wenn ein {\"O}l bei l{\"a}ngerer Lagerung autoxidiert, k{\"o}nnen die Gehalte an oxidierten Fetts{\"a}uren um ein Vielfaches ansteigen. Es konnte gezeigt werden, dass bei der Autoxidation von Spei-se{\"o}len weitere Phytoprostane entstehen und die Konzentrationen von PPE1 und PPF1 im {\"O}l bis auf das 10-fache ansteigen k{\"o}nnen. Weiterhin wurde dabei die Bildung von detektierbaren Mengen dPPJ1 nachgewiesen. Die Kinetik der Phytoprostanbildung folgte dem f{\"u}r andere Autoxidationsprodukte typischem zeitlichen Verlauf und erst nach {\"U}berschreiten einer Induk-tionsperiode traten vermehrt Phytoprostane auf. Im menschlichen Verdauungstrakt sind Phytoprostane chemisch stabil. Allerdings k{\"o}nnen im sauren Milieu des Magens (pH 0-2) Dehydratisierungen auftreten: Nach Inkubation von PPE1 in 0,1 M HCl waren nach 3 h noch 97 \% intakt, wohingegen 3 \% nichtenzymatisch zu PPA1 konvertiert waren. Unter den gleichen Bedingungen wurden 19 \% der inkubierten PGD1 zu dPGJ1 dehydratisiert. In den Pflanzen{\"o}len veresterte PPF1 wurden mit Schweinepankreas-Lipase innerhalb 1 h zu 44 bis 100 \% hydrolysiert. Raffinierte Speise{\"o}le, welche fast ausschließlich aus Triacylglyce-riden zusammengesetzt sind, wurden die veresterten PPF1 sogar zu fast 100 \% hydrolysiert. Weiterhin konnte erstmals gezeigt werden, dass Phytoprostane nach oraler Aufnahme resor-biert werden k{\"o}nnen und anschließend mit dem Urin ausgeschieden werden. Nach Verzehr von Pflanzen{\"o}len (Soja{\"o}l, Oliven{\"o}l, Traubenkern{\"o}l) wurden die Spiegel von PPF1 in Blut und Urin bestimmt. Dabei zeigte sich eine deutliche Korrelation zwischen dem Phytoprostangehalt der {\"O}le und dem Gehalt in den Blut- und Urinproben: Nach Konsum von Oliven- oder Soja{\"o}l konnten innerhalb von 24 h PPF1 in Blut und Urin wiedergefunden werden, wohingegen der Konsum von Traubenkern{\"o}l in den untersuchten Zeitr{\"a}umen weder im Blut noch im Urin zu detektierbaren PPF1-Mengen f{\"u}hrte. Im Blut lag PPF1 verestert vor: Im Serum von Oliven{\"o}l-Konsumenten konnten durchschnittlich 1,22 nmol/l PPF1 gefunden werden. Das Serum eines Soja{\"o}l-Konsumenten enthielt 0,97 nmol PPF1/l. Die Ausscheidung von unmetabolisierten PPF1 mit dem Urin erfolgte fast vollst{\"a}ndig innerhalb der ersten 8 h nach dem Konsum der {\"O}le, 8 bis 24 h danach konnten im Urin nur noch sehr geringe Mengen PPF1 detektiert wer-den. In den Urinproben der Konsumenten von Oliven{\"o}l oder Soja{\"o}l konnten nach 0-4 h durch-schnittlich 2,02 bzw. 0,43 pmol PPF1/mg Kreatinin und nach 4-8 h 1,39 bzw. 0,68 pmol PPF1/mg Kreatinin gefunden werden. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, welche die simultane Bestimmung von Phytohormonen, Oxylipinen und Fetts{\"a}uren erm{\"o}glicht. Weiterhin wurden Methoden zur Metabolit-Analytik entwickelt, mit welchen Konzentrationsunterschiede zwischen zwei Pro-ben direkt verglichen werden k{\"o}nnen. Zur Markierung von der Carboxylgruppe von Oxylipinen, Phytohormonen und Aminos{\"a}uren mit 18O-Sauerstoff wurden allgemein anwendbare Methoden entwickelt. Die [18O]2-markierten Verbindungen erwiesen sich als stabil und eigneten sich als interner Standard in der GC-MS und HPLC-MS Analytik.}, subject = {Prostaglandine}, language = {de} }