@article{AscheidBaumannFunkeetal.2023, author = {Ascheid, David and Baumann, Magdalena and Funke, Caroline and Volz, Julia and Pinnecker, J{\"u}rgen and Friedrich, Mike and H{\"o}hn, Marie and Nandigama, Rajender and Erg{\"u}n, S{\"u}leyman and Nieswandt, Bernhard and Heinze, Katrin G. and Henke, Erik}, title = {Image-based modeling of vascular organization to evaluate anti-angiogenic therapy}, series = {Biology Direct}, volume = {18}, journal = {Biology Direct}, doi = {10.1186/s13062-023-00365-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357242}, year = {2023}, abstract = {In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.}, language = {en} } @techreport{OPUS4-35963, title = {Platelets - Molecular, cellular and systemic functions in health and disease}, editor = {Nieswandt, Bernhard}, organization = {Collaborative Research Centre/Transregio 240}, doi = {10.25972/OPUS-35963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359636}, pages = {25}, year = {2024}, abstract = {Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states.}, subject = {Thrombozyt}, language = {en} } @article{SchreiberLohrBaltesetal.2023, author = {Schreiber, Laura M. and Lohr, David and Baltes, Steffen and Vogel, Ulrich and Elabyad, Ibrahim A. and Bille, Maya and Reiter, Theresa and Kosmala, Aleksander and Gassenmaier, Tobias and Stefanescu, Maria R. and Kollmann, Alena and Aures, Julia and Schnitter, Florian and Pali, Mihaela and Ueda, Yuichiro and Williams, Tatiana and Christa, Martin and Hofmann, Ulrich and Bauer, Wolfgang and Gerull, Brenda and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Terekhov, Maxim}, title = {Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research}, series = {Frontiers in Cardiovascular Medicine}, volume = {10}, journal = {Frontiers in Cardiovascular Medicine}, issn = {2297-055X}, doi = {10.3389/fcvm.2023.1068390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317398}, year = {2023}, abstract = {A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.}, language = {en} } @article{WuZhaoHochreinetal.2023, author = {Wu, Hao and Zhao, Xiufeng and Hochrein, Sophia M. and Eckstein, Miriam and Gubert, Gabriela F. and Kn{\"o}pper, Konrad and Mansilla, Ana Maria and {\"O}ner, Arman and Doucet-Ladev{\`e}ze, Remi and Schmitz, Werner and Ghesqui{\`e}re, Bart and Theurich, Sebastian and Dudek, Jan and Gasteiger, Georg and Zernecke, Alma and Kobold, Sebastian and Kastenm{\"u}ller, Wolfgang and Vaeth, Martin}, title = {Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42634-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358052}, year = {2023}, abstract = {T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.}, language = {en} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @article{GoeritzerKuentzelBecketal.2023, author = {Goeritzer, Madeleine and Kuentzel, Katharina B. and Beck, Sarah and Korbelius, Melanie and Rainer, Silvia and Bradić, Ivan and Kolb, Dagmar and Mussbacher, Marion and Schrottmaier, Waltraud C. and Assinger, Alice and Schlagenhauf, Axel and Rost, Ren{\´e} and Gottschalk, Benjamin and Eichmann, Thomas O. and Z{\"u}llig, Thomas and Graier, Wolfgang F. and Vujić, Nemanja and Kratky, Dagmar}, title = {Monoglyceride lipase deficiency is associated with altered thrombogenesis in mice}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms24043116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304052}, year = {2023}, abstract = {Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl\(^{-/-}\)) and platelet-specific Mgl-deficient (platMgl\(^{-/-}\)) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl\(_3\)-induced injury was markedly reduced in Mgl\(^{-/-}\) mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl\(^{-/-}\) mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl\(^{-/-}\) mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.}, language = {en} } @phdthesis{Schneider2023, author = {Schneider, Nicole}, title = {Untersuchung der Expression von SET7 und anderer epigenetischer Enzyme in vitro und vivo im Modell der Atherosklerose}, doi = {10.25972/OPUS-32895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bei der Atherosklerose handelt es sich um eine chronische inflammatorische Erkrankung, die sich an der arteriellen Gef{\"a}ßinnenwand abspielt. Ihre Haupt-Manifestationsformen Schlaganfall und Herzinfarkt z{\"a}hlen zu den h{\"a}ufigsten Todesursachen weltweit. Eine chronische Endothelbelastung und -funktionsst{\"o}rung, beeinflusst durch Risikofaktoren wie Diabetes, arterieller Bluthochdruck, Rauchen und Entz{\"u}ndungszust{\"a}nde, f{\"u}hren zur Permeabilit{\"a}tserh{\"o}hung des Endothels, zur Zelleinwanderung, subendothelialen Lipidanreicherung, Migration glatter Muskelzellen und der Ausbildung atherosklerotischer L{\"a}sionen. Es kommt zu Aktivierung des Immunsystems und fortschreitender Entz{\"u}ndungsreaktion, schließlich zur Ausbildung eines nekrotischen Kerns und zunehmender Vulnerabilit{\"a}t des Plaques. Epigenetische Ver{\"a}nderungen betreffen klassischerweise das Chromatinger{\"u}st. Durch DNA-Methylierung und -Demethylierung sowie verschiedene Modifikationen der Histon-Proteine kann die DNA in ihrer Zug{\"a}nglichkeit ver{\"a}ndert werden. So kann die Transkription eines bestimmten Genes direkt und potenziell l{\"a}ngerfristig beeinflusst werden, ohne dass Alterationen der DNA-Basenfolge selbst stattfinden. Das Enzym SET7 nimmt hierbei eine Sonderrolle ein, da es neben einer Methylierung von Histon 3 auch verschiedene zellul{\"a}re Zielstrukturen posttranslational direkt methylieren kann. Epigenetische Ver{\"a}nderungen im Kontext der Atherosklerose sind bereits vereinzelt beschrieben. Auch sind sie relevant in der Reaktion auf Umwelteinfl{\"u}sse und bei inflammatorischen Vorg{\"a}ngen. Der Frage, ob epigenetische Mechanismen im atherosklerotischen Geschehen eine Rolle spielen, sollte in dieser Arbeit nachgegangen werden. Dazu wurde in Zellkulturversuchen f{\"u}r Makrophagen und glatte Muskelzellen gepr{\"u}ft, ob die einzelnen pro-atherosklerotischen Stimuli oxLDL, IL-1β, TNFα und LPS bereits zu relevanten Ver{\"a}nderungen epigenetischer Enzyme f{\"u}hren. Dies erfolgte {\"u}ber Vergleich der entsprechenden mRNA mittels qPCR. Zur Untersuchung der genaueren Dynamik wurde f{\"u}r die Enzyme SET7 und DNMT1 der zeitliche Ablauf dieser Reaktion auf TNFα-Stimulation in Makrophagen genauer betrachtet. Unter gleichen Versuchsbedingungen wurde außerdem die {\"A}nderung der mRNA-Expression einiger Matrixmetalloproteasen, TIMP-Enzyme, Zytokine und Transkriptionsfaktoren analysiert,um zuk{\"u}nftig kausale Zusammenh{\"a}nge weiter aufdecken zu k{\"o}nnen. Auch die Frage nach Ver{\"a}nderungen epigenetischer Enzyme in der Ldlr-/--Maus nach fettreicher Di{\"a}t im Vergleich zu Ldlr-/--M{\"a}usen ohne Di{\"a}t sollte hier beantwortet werden. Dazu wurde die mRNA der Zellsuspensionen aus Milz, Aortenwurzel und gesamter Aorta der Tiere mithilfe der qPCR verglichen. Schließlich sollte ein effizienter Weg f{\"u}r einen individuellen und flexiblen SET7 knock-out etabliert werden, um weitere Studien dieses Enzyms zu erm{\"o}glichen. Hierzu wurde die Methode des CRISPR/Cas9 Systems gew{\"a}hlt und abschließend die Funktionalit{\"a}t des Systems {\"u}berpr{\"u}ft.}, subject = {Arteriosklerose}, language = {de} } @phdthesis{Mott2023, author = {Mott, Kristina}, title = {Regulation of platelet biogenesis in the native and myeloablated bone marrow niche}, doi = {10.25972/OPUS-28963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Megakaryocytes (MKs) are the largest cells of the hematopoietic system and the precursor cells of platelets. During proplatelet formation (PPF) bone marrow (BM) MKs extent large cytoplasmic protrusions into the lumen of sinusoidal blood vessels. Under homeostatic conditions PPF occurs exclusively in the direction of the sinusoid, while platelet generation into the marrow cavity is prevented. So far, the mechanisms regulating this process in vivo are still not completely understood, especially when PPF is deregulated during disease. This thesis investigated the mechanisms of PPF in native BM and after myeloablation by total body irradiation (TBI). First, we have identified a specialized type of BM stromal cells, so called CXCL12-abundant reticular (CAR) cells, as novel possible regulators of PPF. By using complementary high-resolution microscopy techniques, we have studied the morphogenetic events at the MK/vessel wall interface in new detail, demonstrating that PPF formation preferentially occurs at CAR cell-free sites at the endothelium. In the second part of this thesis, we analyzed the processes leading to BM remodeling in response to myeloablation by TBI. We used confocal laser scanning microscopy (CLSM) to study the kinetic of radiation-triggered vasodilation and mapped extracellular matrix (ECM) proteins after TBI. We could demonstrate that collagen type IV and laminin α5 are specifically degraded at BM sinusoids. At the radiation-injured vessel wall we observed ectopic release of platelet-like particles into the marrow cavity concomitantly to aberrant CAR cell morphology, suggesting that the balance of factors regulating PPF is disturbed after TBI. ECM proteolysis is predominantly mediated by the matrix metalloproteinase MMP9, as revealed by gelatin-zymography and by a newly established BM in situ zymography technique. In transgenic mice lacking MMP9 vascular recovery was delayed, hinting towards a role of MMP9 in vessel reconstitution after myeloablation. In a third series of experiments, we studied the irradiated BM in the context of hematopoietic stem cell transplantation (HSCT). By using mice as BM donors that ubiquitously express the fluorescent reporter protein dsRed we tracked engraftment of donor cells and especially MKs in the recipient BM. We found a distinct engraftment pattern and cluster formation for MKs, which is different from other blood cell lineages. Finally, we assessed platelet function after TBI and HSCT and were the first to demonstrate that platelets become massively hyporeactive, particularly upon stimulation of the collagen receptor GPVI. In summary, our findings shed light on the processes of PPF during health and disease which will help to develop treatments for aberrant thrombopoiesis.}, subject = {Knochenmark}, language = {en} } @article{ButtHowardRaman2022, author = {Butt, Elke and Howard, Cory M. and Raman, Dayanidhi}, title = {LASP1 in cellular signaling and gene expression: more than just a cytoskeletal regulator}, series = {Cells}, volume = {11}, journal = {Cells}, number = {23}, issn = {2073-4409}, doi = {10.3390/cells11233817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297447}, year = {2022}, abstract = {LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.}, language = {en} } @phdthesis{Schurr2023, author = {Schurr, Yvonne}, title = {Studies on the role of cytoskeletal-regulatory and -crosslinking proteins in platelet function}, doi = {10.25972/OPUS-21892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cytoskeletal reorganization in platelets is highly regulated and important for proper platelet function during activation and aggregation at sites of vascular injury. In this thesis, the role of three different cytoskeletal-regulatory and -crosslinking proteins was studied in platelet physiology using megakaryocyte- and platelet-specific knockout mice. The generation of branched actin filaments is regulated by nucleation promoting factors (NPF) and the Arp2/3 complex. (1.) The WAVE complex is a NPF, which upregulates the Arp2/3 complex activity at the plasma membrane. As shown in this thesis, the loss of the WAVE complex subunit Cyfip1 in mice did not alter platelet production and had only a minor impact on platelet activation. However, Cyfip1 played an essential role for branching of actin filaments and consequently for lamellipodia formation in vitro. The importance of lamellipodia for thrombus formation and stability has been controversially discussed. Cyfip1-deficient platelets were able to form a stable thrombus ex vivo and in vivo and a hemostatic plug comparable to controls. Moreover, Cyfip1-deficient mice maintained vascular integrity at the site of inflammation. These data show that platelet lamellipodia formation is not required for hemostatic function and pathophysiological thrombus formation. (2.) The WASH complex is another NPF, which mediates actin filament polymerization on endosomal vesicles via the Arp2/3 complex. Loss of the WASH complex subunit Strumpellin led to a decreased protein abundance of the WASH protein and to a 20\% reduction in integrin αIIbβ3 surface expression on platelets and megakaryocytes, whereas the expression of other surface receptors as well as the platelet count, size, ex vivo thrombus formation and bleeding time remained unaltered. These data point to a distinct role of Strumpellin in maintaining integrin αIIbβ3 expression and provide new insights into regulatory mechanisms of platelet integrins. (3.) MACF1 has been described as a cytoskeletal crosslinker of microtubules and F-actin. However, MACF1-deficient mice displayed no alterations in platelet production, activation, thrombus formation and hemostatic function. Further, no compensatory up- or downregulation of other proteins could be found that contain an F-actin- and a microtubule-binding domain. These data indicate that MACF1 is dispensable for platelet biogenesis, activation and thrombus formation. Nevertheless, functional redundancy among different proteins mediating the cytoskeletal crosstalk may exist.}, subject = {Cytoskeleton}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @phdthesis{Knochenhauer2023, author = {Knochenhauer, Tim}, title = {Die Rolle von HIF-1α in T-Zellen bei kardiovaskul{\"a}ren Erkrankungen}, doi = {10.25972/OPUS-32275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Atherosklerose ist als Ursache kardiovaskul{\"a}rer Erkrankungen, welche die h{\"a}ufigste Todesursache weltweit darstellen, von großer klinischer und wissenschaftlicher Relevanz. Atherosklerose ist charakterisiert durch Einlagerungen von Lipiden in die Gef{\"a}ßwand, welche zur Ausbildung von Plaques f{\"u}hren. Als Folge wird eine chronische Entz{\"u}ndungsreaktion eingeleitet, die durch spezifische Immunzellen, unter anderem T-Lymphozyten, und komplexe molekulare Prozesse aufrechterhalten wird. Durch eine verminderte Sauerstoffdiffusionskapazit{\"a}t und eine hohe Zelldichte ist das Milieu in den Plaques hypoxisch. Zur zellul{\"a}ren Anpassung an ein solches hypoxisches Milieu werden Hypoxie-induzierbare Faktoren (HIF) in den Immunzellen stabilisiert. Der Transkriptionsfaktor HIF-1 ist ein heterodimeres Protein, welches die Transkription bestimmter Zielgene initiiert, die den Zellen notwendige Adaptationen des Zellstoffwechsels an ein vermindertes Sauerstoffangebot erm{\"o}glichen. Das Ziel der vorliegenden Arbeit bestand darin zu untersuchen, inwiefern sich ein Ausschalten des Transkriptionsfaktor HIF-1α selektiv in T-Lymphozyten auf Atherosklerose und Myokardinfarkt auswirkt. Die funktionelle Bedeutung von HIF-1α in T-Zellen in der Pathogenese dieser Erkrankungen wurde an zwei Mausmodellen untersucht. Im Atherosklerose Modell wurde Biomaterial von LDLR-/- M{\"a}usen mit T-Zell spezifischem Knockout von HIF-1α nach achtw{\"o}chiger fettreicher Western-Typ Di{\"a}t untersucht. Histologisch zeigte sich eine vermehrte Plaqueauspr{\"a}gung und ein verminderter Makrophagenanteil in den Plaques. Durchflusszytometrisch und mittels qPCR konnten keine Unterschiede in der Lymphozytendifferenzierung in Milz und Lymphknoten dieser M{\"a}use nachgewiesen werden. Im Myokardinfarkt-Modell mit T-Zell spezifischem HIF-1α Knockout konnte in fr{\"u}heren Untersuchungen der Arbeitsgruppe eine vergr{\"o}ßerte Infarktzone mit eingeschr{\"a}nkter kardialer Funktion nachgewiesen werden. Histologisch konnte im Rahmen dieser Arbeit hierf{\"u}r kein zellmorphologisches Korrelat in Kardiomyozytengr{\"o}ße oder der Vaskularisation des Myokards gefunden werden. In Zukunft k{\"o}nnte HIF-1α in T-Lymphozyten ein m{\"o}glicher Angriffspunkt zur medikament{\"o}sen Pr{\"a}vention oder Therapie kardiovaskul{\"a}rer Erkrankungen sein.}, subject = {Hypoxie-induzierbarer Faktor}, language = {de} } @article{KooMatthewsHarrisonetal.2022, author = {Koo, Chek Ziu and Matthews, Alexandra L. and Harrison, Neale and Szyroka, Justyna and Nieswandt, Bernhard and Gardiner, Elizabeth E. and Poulter, Natalie S. and Tomlinson, Michael G.}, title = {The platelet collagen receptor GPVI is cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 molecular scissors}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284468}, year = {2022}, abstract = {The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a 'molecular scissor' that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{PerrellaMontagueBrownetal.2022, author = {Perrella, Gina and Montague, Samantha J. and Brown, Helena C. and Garcia Quintanilla, Lourdes and Slater, Alexandre and Stegner, David and Thomas, Mark and Heemskerk, Johan W. M. and Watson, Steve P.}, title = {Role of tyrosine kinase Syk in thrombus stabilisation at high shear}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284243}, year = {2022}, abstract = {Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s\(^{-1}\)). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A\(_2\) (TxA\(_2\)), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.}, language = {en} } @article{NavarroStegnerNieswandtetal.2021, author = {Navarro, Stefano and Stegner, David and Nieswandt, Bernhard and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E.}, title = {Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284219}, year = {2021}, abstract = {In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.}, language = {en} } @phdthesis{Reil2023, author = {Reil, Lucy Honor}, title = {The role of WASH complex subunit Strumpellin in platelet function}, doi = {10.25972/OPUS-24207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Strumpellin is a member of the highly conserved pentameric WASH complex, which stimulates the Arp2/3 complex on endosomes and induces the formation of a branched actin network. The WASH complex is involved in the formation and stabilisation of endosomal retrieval subdomains and transport carriers, into which selected proteins are packaged and subsequently transported to their respective cellular destination, e.g. the plasma membrane. Up until now, the role of Strumpellin in platelet function and endosomal trafficking has not been researched. In order to examine its role, a conditional knockout mouse line was generated, which specifically lacked Strumpellin in megakaryocytes and platelets. Conditional knockout of Strumpellin resulted in only a mild platelet phenotype. Loss of Strumpellin led to a decreased abundance of the αIIbβ3 integrin in platelets, including a reduced αIIbβ3 surface expression by approximately 20\% and an impaired αIIbβ3 activation after platelet activation. The reduced surface expression of αIIbβ3 was also detected in megakaryocytes. The expression of other platelet surface glycoproteins was not affected. Platelet count, size and morphology remained unaltered. The reduction of αIIbβ3 expression in platelets resulted in a reduced fibrinogen binding capacity after platelet activation. However, fibrinogen uptake under resting conditions, although slightly delayed, as well as overall fibrinogen content in Strumpellin-deficient platelets were comparable to controls. Most notably, reduced αIIbβ3 expression did not lead to any platelet spreading and aggregation defects in vitro. Furthermore, reduced WASH1 protein levels were detected in the absence of Strumpellin. In conclusion, loss of Strumpellin does not impair platelet function, at least not in vitro. However, the data demonstrates that Strumpellin plays a role in selectively regulating αIIbβ3 surface expression. As a member of the WASH complex, Strumpellin may regulate αIIbβ3 recycling back to the platelet surface. Furthermore, residual WASH complex subunits may still assemble and partially function in the absence of Strumpellin, which could explain the only 20\% decrease in αIIbβ3 surface expression. Nonetheless, the exact mechanism still remains unclear.}, language = {en} } @article{UngernSternbergZerneckeSeizer2018, author = {Ungern-Sternberg, Saskia N. I. von and Zernecke, Alma and Seizer, Peter}, title = {Extracellular matrix metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms19020507}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285014}, year = {2018}, abstract = {The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease.}, language = {en} } @article{LeopoldZeilbeckWeberetal.2017, author = {Leopold, Stephanie A. and Zeilbeck, Ludwig F. and Weber, Gregor and Seitz, Roswitha and B{\"o}sl, Michael R. and J{\"a}gle, Herbert and Fuchshofer, Rudolf and Tamm, Ernst R. and Ohlmann, Andreas}, title = {Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-14423-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173494}, year = {2017}, abstract = {Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.}, language = {en} } @article{SubramaniyanSridharanHowardetal.2020, author = {Subramaniyan, Boopathi and Sridharan, Sangita and Howard, Cory M. and Tilley, Augustus M.C. and Basuroy, Tupa and Serna, Ivana de la and Butt, Elke and Raman, Dayanidhi}, title = {Role of the CXCR4-LASP1 axis in the stabilization of Snail1 in triple-negative breast cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers12092372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211217}, year = {2020}, abstract = {The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.}, language = {en} } @phdthesis{Rizzo2023, author = {Rizzo, Giuseppe}, title = {Determinants of macrophage and neutrophil heterogeneity in cardiac repair after myocardial infarction}, doi = {10.25972/OPUS-31068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Current therapeutic strategies efficiently improve survival in patients after myocardial infarction (MI). Nevertheless, long-term consequences such as heart failure development, are still one of the leading causes of death worldwide. Inflammation is critically involved in the cardiac healing process after MI and has a dual role, contributing to both tissue healing and tissue damage. In the last decade, a lot of attention was given to targeting inflammation as a potential therapeutic approach in MI, but the poor understanding of inflammatory cell heterogeneity and function is a limit to the development of immune modulatory strategies. The recent development of tools to profile immune cells with high resolution has provided a unique opportunity to better understand immune cell heterogeneity and dynamics in the ischemic heart. In this thesis, we employed single-cell RNA-sequencing combined with detection of epitopes by sequencing (CITE-seq) to refine our understanding of neutrophils and monocytes/macrophages heterogeneity and dynamic after experimental myocardial infarction. Neutrophils rapidly invade the infarcted heart shortly after ischemic damage and have previously been proposed to display time-dependent functional heterogeneity. At the single-cell level, we observed dynamic transcriptional heterogeneity in neutrophil populations during the acute post-MI phase and defined previously unknown cardiac neutrophil states. In particular, we identified a locally acquired SiglecFhi neutrophil state that displayed higher ROS production and phagocytic ability compared to newly recruited neutrophils, suggesting the acquisition of specific function in the infarcted heart. These findings highlight the importance of the tissue microenvironment in shaping neutrophil response. From the macrophage perspective, we characterized MI-associated monocyte-derived macrophage subsets, two with a pro-inflammatory gene signature (MHCIIhiIl1βhi) and three Trem2hi macrophage populations with a lipid associated macrophage (LAM) signature, also expressing pro-fibrotic and tissue repair genes. Combined analysis of blood monocytes and cardiac monocyte/macrophages indicated that the Trem2hi LAM signature is acquired in the infarcted heart. We furthermore characterized the role of TREM2, a surface protein expressed mainly in macrophages and involved in macrophage survival and function, in the post-MI macrophage response and cardiac repair. Using TREM2 deficient mice, we demonstrate that acquisition of the LAM signature in cardiac macrophages after MI is partially dependent on TREM2. While their cardiac function was not affected, TREM2 deficient mice showed reduced collagen deposition in the heart after MI. Thus, our data in Trem2-deficient mice highlight the role of TREM2 in promoting a macrophage pro-fibrotic phenotype, in line with the pro-fibrotic/tissue repair gene signature of the Trem2hi LAM-signature genes. Overall, our data provide a high-resolution characterization of neutrophils and macrophage heterogeneity and dynamics in the ischemic heart and can be used as a valuable resource to investigate how these cells modulate the healing processes after MI. Furthermore, our work identified TREM2 as a regulator of macrophage phenotype in the infarcted heart}, subject = {Makrophage}, language = {en} } @phdthesis{Ranecky2023, author = {Ranecky, Maria Helena}, title = {Experimentelle Charakterisierung intestinaler, GvHD-protektiver myeloider Empf{\"a}ngerzellen nach allogener Stammzelltransplantation}, doi = {10.25972/OPUS-31092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die akute Graft-versus-Host Disease (GvHD) und speziell ihre intestinale Manifestation ist eine schwere Komplikation der allogenen Stammzelltransplantation mit erheblichem Einfluss auf Mortalit{\"a}t und Morbidit{\"a}t der Patienten. Pathophysiologisch stellt sie eine Immunreaktion von Spender-T-Zellen auf Empf{\"a}ngergewebestrukturen dar. In Versuchsm{\"a}usen ist die experimentelle Depletion CD11c+ Antigen-pr{\"a}sentierender Empf{\"a}ngerzellen in der fr{\"u}hen GvHD-Effektorphase assoziiert mit einem schlechteren klinischen Outcome, einer h{\"o}heren Dichte alloreaktiver T-Zellen und einer verst{\"a}rkten Entz{\"u}ndungsreaktion in der intestinalen Mukosa. Ziel der Studie war eine umfassende Charakterisierung und systematische Einordnung der folglich GvHD-protektiven intestinalen CD11c+ Empf{\"a}ngerzellen. Bez{\"u}glich ihrer Oberfl{\"a}chenproteinsignatur analysierten wir die myeloiden Zellen der intestinalen Mukosa am Tag 6 nach allogener Stammzelltransplantation. Mittels durchflusszytometrischer Analyse und Vergleich zwischen gesunden, allein bestrahlten und GvHD-M{\"a}usen ordneten wir die CD11c+ Empf{\"a}ngerzellen als Makrophagen ein und schlossen eine Identit{\"a}t als dendritische Zellen aus. In der Immunfluoreszenzmikroskopie wiesen wir ihre Kolokalisation mit allogenen T-Zellen nach und best{\"a}tigten darin eine PD-L1 Expression als m{\"o}glichen T-Zell-Suppressionsmechanismus. Bez{\"u}glich ihres Transkriptoms f{\"u}hrten wir eine Einzelzell-RNA-Sequenzierung intestinaler h{\"a}matopoetischer Empf{\"a}ngerzellen aus CD11c+ Zell-depletierten und nicht depletierten M{\"a}usen durch. Auf rein bioinformatischer Grundlage wurden die Einzelzellen kombiniert und anhand ihrer Transkriptomprofile in Cluster eingeteilt. Der Vergleich beider Versuchsgruppen offenbarte zwei unterschiedliche pr{\"a}sente bzw. depletierte und damit GvHD-protektive Zellcluster: Cluster 4 enthielt Zellen mit deutlicher Makrophagensignatur und gewebeprotektivem, antipathogenem Effektorprofil, welches in Kombination mit weiteren Genen ein Kontinuum der in Hom{\"o}ostase vorhandenen Makrophagen nahelegte. Cluster 10 dagegen enthielt Zellen mit immun- und spezifisch T-Zell-suppressivem Effektorprofil, weniger deutlicher Makrophagensignatur und {\"A}hnlichkeit zu myeloiden Suppressorzellen. Somit lieferte die Studie wichtige Hinweise auf einen Mechanismus der GvHD- bzw. T-Zell-Suppression und Gewebeprotektion in Form von physiologisch vorhandenen bzw. im Laufe der GvHD auftretenden Empf{\"a}ngermakrophagen.}, subject = {Makrophage}, language = {de} } @article{GuptaOsmanogluMinochaetal.2022, author = {Gupta, Shishir K. and Osmanoglu, {\"O}zge and Minocha, Rashmi and Bandi, Sourish Reddy and Bencurova, Elena and Srivastava, Mugdha and Dandekar, Thomas}, title = {Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.1008527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293953}, year = {2022}, abstract = {Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design.}, language = {en} } @article{NavarroStarkeHeemskerketal.2022, author = {Navarro, Stefano and Starke, Andreas and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E. and Stegner, David and Nieswandt, Bernhard}, title = {Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286227}, year = {2022}, abstract = {Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6\(^{tg/tg\)). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.}, language = {en} } @phdthesis{Weiss2023, author = {Weiß, Lukas Johannes}, title = {Thrombozytenfunktionsanalyse bei Patienten mit Sepsis}, doi = {10.25972/OPUS-30203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302030}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Sepsis ist eine dysregulierte Reaktion des Organismus auf eine Infektion. Bei Sepsis werden oft Blutungs- und Thromboseereignisse beobachtet, welche in einer Disseminierten Intravasalen Gerinnung (DIG) gipfeln k{\"o}nnen. Thrombozyten sind die Schl{\"u}sselzellen von Thrombose und H{\"a}mostase. Bei Sepsis und DIG kommt es h{\"a}ufig zu einem Abfall der Thrombozytenzahl, doch Blutungs- und Thromboseereignisse k{\"o}nnen unabh{\"a}ngig von der Thrombozytenzahl auftreten, was zus{\"a}tzlich eine Ver{\"a}nderung der Thrombozytenfunktion nahelegt. In dieser Arbeit wurde deshalb die Thrombozytenfunktion bei 15 Patienten mit Sepsis zu drei Zeitpunkten im Krankheitsverlauf untersucht. Es konnte bei unauff{\"a}lliger Rezeptorexpression keine Voraktivierung der Thrombozyten mittels Durchflusszytometrie festgestellt werden. Jedoch war die Aktivierung nach Stimulation mit multiplen Agonisten signifikant reduziert. Besonders ausgepr{\"a}gt war die Hyporeaktivit{\"a}t bei Stimulation des Kollagen-Rezeptors GPVI mit dem Agonisten CRP-XL. Es wurde gezeigt, dass nach GPVI-Stimulation eine reduzierte Phosphorylierung der nachgeschalteten Proteine Syk und LAT im Vergleich zum Gesundspender induziert wird. In Kreuzinkubationsexperimenten hatte die (Co )Inkubation von Thrombozyten in Plasma von Sepsispatienten oder mit Bakterienisolaten aus Sepsis-Blutkulturen keinen Effekt auf die Thrombozytenreaktivit{\"a}t. Allerdings konnte durch Sepsis-Vollblut eine signifikante GPVI-Hyporeaktivit{\"a}t in Thrombozyten von gesunden Probanden induziert werden, was einen zellul{\"a}ren Mediator als Ursache des Defekts nahelegt. In dieser Arbeit wurde gezeigt, dass insbesondere die GPVI-Signalkaskade bei Sepsis massiv beeintr{\"a}chtigt ist. Der Immunorezeptor GPVI ist ein vielversprechendes Zielmolek{\"u}l, um die Pathogenese der Sepsis, des Capillary Leak und die immunregulatorische Rolle von Thrombozyten besser zu verstehen. Die GPVI-Hyporeaktivit{\"a}t k{\"o}nnte als zuk{\"u}nftiger Biomarker f{\"u}r die Sepsis-Fr{\"u}hdiagnose genutzt werden.}, subject = {Sepsis}, language = {de} } @article{RosaButtHopperetal.2022, author = {Rosa, Annabelle and Butt, Elke and Hopper, Christopher P. and Loroch, Stefan and Bender, Markus and Schulze, Harald and Sickmann, Albert and Vorlova, Sandra and Seizer, Peter and Heinzmann, David and Zernecke, Alma}, title = {Cyclophilin a is not acetylated at lysine-82 and lysine-125 in resting and stimulated platelets}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms23031469}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284011}, year = {2022}, abstract = {Cyclophilin A (CyPA) is widely expressed by all prokaryotic and eukaryotic cells. Upon activation, CyPA can be released into the extracellular space to engage in a variety of functions, such as interaction with the CD147 receptor, that contribute to the pathogenesis of cardiovascular diseases. CyPA was recently found to undergo acetylation at K82 and K125, two lysine residues conserved in most species, and these modifications are required for secretion of CyPA in response to cell activation in vascular smooth muscle cells. Herein we addressed whether acetylation at these sites is also required for the release of CyPA from platelets based on the potential for local delivery of CyPA that may exacerbate cardiovascular disease events. Western blot analyses confirmed the presence of CyPA in human and mouse platelets. Thrombin stimulation resulted in CyPA release from platelets; however, no acetylation was observed—neither in cell lysates nor in supernatants of both untreated and activated platelets, nor after immunoprecipitation of CyPA from platelets. Shotgun proteomics detected two CyPA peptide precursors in the recombinant protein, acetylated at K28, but again, no acetylation was found in CyPA derived from resting or stimulated platelets. Our findings suggest that acetylation of CyPA is not a major protein modification in platelets and that CyPA acetylation is not required for its secretion from platelets.}, language = {en} } @phdthesis{Westhofen2022, author = {Westhofen, Thilo Chou-Jong}, title = {Die Entwicklung und Charakterisierung Dendritischer Zell-Subsets in der gesunden und arteriosklerotischen Aorta}, doi = {10.25972/OPUS-29621}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296210}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Arteriosklerose ist eine chronisch inflammatorische Erkrankung der Gef{\"a}ßwand. Nach aktuellem Wissensstand sind Dendritische Zellen (DCs) maßgeblich an der Entstehung und dem Fortschreiten von Arteriosklerose beteiligt. In der Vergangenheit konnten f{\"u}r DCs unterschiedliche Subsets beschreiben werden, die sowohl proinflammatorische als auch immunregulatorische Funktionen {\"u}bernehmen k{\"o}nnen. Die systematische Charakterisierung von DCs in der gesunden Aorta, sowie w{\"a}hrend der Entstehung von Arteriosklerose ist jedoch noch ausstehend. In der vorliegenden Arbeit wurde zun{\"a}chst die systematische Einteilung von DCs in vitro mit Hilfe von DCs aus Flt3L-Knochenmarkskulturen durchgef{\"u}hrt. Aufbauend darauf erfolgte die systematische Analyse aortaler DCs durch tierexperimentelle Untersuchungen an gesunden C57BL/6J M{\"a}usen, sowie Apolipoprotein E-defizienten (ApoE-/-) M{\"a}usen und low-density-lipoprotein-receptor-defizienten (Ldlr-/-) M{\"a}usen w{\"a}hrend der Atherogenese. Mittels immunhistochemischer Untersuchungen von CD11cYFPreporter M{\"a}usen konnten zudem korrelierend DCs in der Gef{\"a}ßwand der murinen Aorta lokalisiert werden. Zusammenfassend gibt die vorliegende Arbeit erstmalig einen systematischen {\"U}berblick {\"u}ber die einzelnen DC-Subsets in der gesunden Aorta und w{\"a}hrend der Atherogenese. Dies tr{\"a}gt zu einem besseren Verst{\"a}ndnis der Rolle der einzelnen DC Subsets w{\"a}hrend der Entstehung der Arteriosklerose bei und bietet eine m{\"o}gliche Grundlage f{\"u}r zuk{\"u}nftige Behandlungsstrategien. Die Ergebnisse dieser Arbeit wurden im Februar 2014 als Originalarbeit in geteilter Erstautorenschaft von Martin Busch, Thilo Westhofen und Miriam Koch unter dem Titel Dendritic Cell Subset Distributions in the Aorta in Healthy and Atherosclerotic Mice im Plos One publiziert (1). Die Originalpublikation findet sich im Folgenden unter Absatz 11. Die Ergebnisse dieser Publikation wurden modifiziert unter 6.1-6.5 dargelegt und unter 7.1-7.5 im Kontext der aktuellen Literatur diskutiert. Sofern nicht anders angegeben, wurden alle Experimente von Thilo Westhofen geplant, durchgef{\"u}hrt und ausgewertet.}, subject = {Dendritische Zelle}, language = {de} } @phdthesis{Kurz2022, author = {Kurz, Hendrikje}, title = {Regulation of ion conductance and cAMP/cGMP concentration in megakaryocytes by light}, doi = {10.25972/OPUS-21694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216947}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Platelets play an essential role in haemostasis. Through granule secretion of second wave mediators and aggregation, they secure vascular integrity. Due to incorrect activation, platelet aggregation and subsequent thrombus formation can cause blood vessel occlusion, leading to ischemia. Patients with defects in platelet production have a low platelet count (thrombocytopenia), which can cause an increased bleeding risk. In vitro platelet generation is still in its development phase. So far, no convincing results have been obtained. For this reason, the health care system still depends on blood donors. Platelets are produced by bone marrow megakaryocytes (MKs), which extend long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Due to shear forces, platelets are then released into the bloodstream. The molecular mechanisms underlying platelet production are still not fully understood. However, a more detailed insight of this biological process is necessary to improve the in vitro generation of platelets and to optimise treatment regimens of patients. Optogenetics is defined as "light-modulation of cellular activity or of animal behaviour by gene transfer of photo-sensitive proteins". Optogenetics has had a big impact on neuroscience over the last decade. The use of channelrhodopsin 2 (ChR2), a light-sensitive cation channel, made it possible to stimulate neurons precisely and minimally invasive for the first time. Recent developments in the field of optogenetics intend to address a broader scope of cellular and molecular biology. The aim of this thesis is to establish optogenetics in the field of MK research in order to precisely control and manipulate MK differentiation. An existing "optogenetic toolbox" was used, which made it possible to light-modulate the cellular concentration of specific signalling molecules and ion conductance in MKs. Expression of the bacterial photoactivated adenylyl cyclase (bPAC) resulted in a significant increase in cAMP concentration after 5 minutes of illumination. Similarly, intracellular cGMP concentrations in MKs expressing photoactivated guanylyl cyclase (BeCyclop) were elevated. Furthermore, proplatelet formation of MKs expressing the light-sensitive ion channels ChR2 and anion channelrhodopsin (ACR) was altered in a light-dependent manner. These results show that MK physiology can be modified by optogenetic approaches. This might help shed new light on the underlying mechanisms of thrombopoiesis.}, subject = {Optogenetik}, language = {en} } @article{LauknerTruchetManukjanetal.2021, author = {Laukner, Anna and Truchet, Laura and Manukjan, Georgi and Schulze, Harald and Langbein-Detsch, Ines and Mueller, Elisabeth and Leeb, Tosso and Kehl, Alexandra}, title = {Effects of cocoa genotypes on coat color, platelets and coagulation parameters in French Bulldogs}, series = {Genes}, volume = {12}, journal = {Genes}, number = {7}, issn = {2073-4425}, doi = {10.3390/genes12071092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242745}, year = {2021}, abstract = {A nonsense variant in HPS3, c.2420G>A or p.Trp807*, was recently discovered as the cause for a brown coat color termed cocoa in French Bulldogs. Here, we studied the genotype-phenotype correlation regarding coat color in HPS3 mutant dogs that carried various combinations of mutant alleles at other coat color genes. Different combinations of HPS3, MLPH and TYRP1 genotypes resulted in subtly different shades of brown coat colors. As HPS3 variants in humans cause the Hermansky-Pudlak syndrome type 3, which in addition to oculocutaneous albinism is characterized by a storage pool deficiency leading to bleeding tendency, we also investigated the phenotypic consequences of the HPS3 variant in French Bulldogs on hematological parameters. HPS3 mutant dogs had a significantly lowered platelet dense granules abundance. However, no increased bleeding tendencies in daily routine were reported by dog owners. We therefore conclude that in dogs, the phenotypic effect of the HPS3 variant is largely restricted to pigmentation. While an effect on platelet morphology is evident, we did not obtain any indications for major health problems associated with the cocoa coat color in French Bulldogs. Further studies will be necessary to definitely rule out very subtle effects on visual acuity or a clinically relevant bleeding disorder.}, language = {en} } @article{SchaeferZernecke2020, author = {Sch{\"a}fer, Sarah and Zernecke, Alma}, title = {CD8\(^+\) T cells in atherosclerosis}, series = {Cells}, volume = {10}, journal = {Cells}, number = {1}, issn = {2073-4409}, doi = {10.3390/cells10010037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220170}, year = {2020}, abstract = {Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8\(^+\) T cells. The CD8\(^+\) T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8\(^+\) T cells ameliorates atherosclerosis. CD8\(^+\) T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8\(^+\) T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8\(^+\) T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8\(^+\) T cells and their cytotoxic activity. CD8\(^+\) T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25\(^+\)CD8\(^+\) T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8\(^+\) T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8\(^+\) T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8\(^+\) T cells in atherosclerosis.}, language = {en} } @article{ButtStempfleListeretal.2020, author = {Butt, Elke and Stempfle, Katrin and Lister, Lorenz and Wolf, Felix and Kraft, Marcella and Herrmann, Andreas B. and Viciano, Cristina Perpina and Weber, Christian and Hochhaus, Andreas and Ernst, Thomas and Hoffmann, Carsten and Zernecke, Alma and Frietsch, Jochen J.}, title = {Phosphorylation-dependent differences in CXCR4-LASP1-AKT1 interaction between breast cancer and chronic myeloid leukemia}, series = {Cells}, volume = {9}, journal = {Cells}, number = {2}, issn = {2073-4409}, doi = {10.3390/cells9020444}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200638}, year = {2020}, abstract = {The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival. While in chronic myeloid leukemia (CML) the CXCR4 is downregulated, thereby promoting the mobilization of progenitor cells into blood, the receptor is highly expressed in breast cancer cells, favoring the migratory capacity of these cells. Recently, the LIM and SH3 domain protein 1 (LASP1) has been described as a novel CXCR4 binding partner and as a promoter of the PI3K/AKT pathway. In this study, we uncovered a direct binding of LASP1, phosphorylated at S146, to both CXCR4 and AKT1, as shown by immunoprecipitation assays, pull-down experiments, and immunohistochemistry data. In contrast, phosphorylation of LASP1 at Y171 abrogated these interactions, suggesting that both LASP1 phospho-forms interact. Finally, findings demonstrating different phosphorylation patterns of LASP1 in breast cancer and chronic myeloid leukemia may have implications for CXCR4 function and tyrosine kinase inhibitor treatment.}, language = {en} } @article{GoebVollZimmermannetal.2021, author = {G{\"o}b, Vanessa and Voll, Maximilian G. and Zimmermann, Lena and Hemmen, Katharina and Stoll, Guido and Nieswandt, Bernhard and Schuhmann, Michael K. and Heinze, Katrin G. and Stegner, David}, title = {Infarct growth precedes cerebral thrombosis following experimental stroke in mice}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-02360-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265791}, year = {2021}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, successful recanalization of occluded vessels is the primary therapeutic aim, but even if it is achieved, not all patients benefit. Although blockade of platelet aggregation did not prevent infarct progression, cerebral thrombosis as cause of secondary infarct growth has remained a matter of debate. As cerebral thrombi are frequently observed after experimental stroke, a thrombus-induced impairment of the brain microcirculation is considered to contribute to tissue damage. Here, we combine the model of transient middle cerebral artery occlusion (tMCAO) with light sheet fluorescence microscopy and immunohistochemistry of brain slices to investigate the kinetics of thrombus formation and infarct progression. Our data reveal that tissue damage already peaks after 8 h of reperfusion following 60 min MCAO, while cerebral thrombi are only observed at later time points. Thus, cerebral thrombosis is not causative for secondary infarct growth during ischemic stroke.}, language = {en} } @article{BeckStegnerLorochetal.2021, author = {Beck, Sarah and Stegner, David and Loroch, Stefan and Baig, Ayesha A. and G{\"o}b, Vanessa and Schumbutzki, Cornelia and Eilers, Eva and Sickmann, Albert and May, Frauke and Nolte, Marc W. and Panousis, Con and Nieswandt, Bernhard}, title = {Generation of a humanized FXII knock-in mouse-A powerful model system to test novel anti-thrombotic agents}, series = {Journal of Thrombosis and Haemostasis}, volume = {19}, journal = {Journal of Thrombosis and Haemostasis}, number = {11}, doi = {10.1111/jth.15488}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259567}, pages = {2835-2840}, year = {2021}, abstract = {Background Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. Objective The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. Methods A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. Results These hF12\(^{KI}\) mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12\(^{KI}\) mice in an arterial thrombosis model without affecting bleeding times. Conclusion These data establish the newly generated hF12\(^{KI}\) mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.}, language = {en} } @article{HerrmannNotzSchlesingeretal.2021, author = {Herrmann, Johannes and Notz, Quirin and Schlesinger, Tobias and Stumpner, Jan and Kredel, Markus and Sitter, Magdalena and Schmid, Benedikt and Kranke, Peter and Schulze, Harald and Meybohm, Patrick and Lotz, Christopher}, title = {Point of care diagnostic of hypercoagulability and platelet function in COVID-19 induced acute respiratory distress syndrome: a retrospective observational study}, series = {Thrombosis Journal}, volume = {19}, journal = {Thrombosis Journal}, number = {1}, doi = {10.1186/s12959-021-00293-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260739}, year = {2021}, abstract = {Background Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. Methods This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. Results Median age was 61 years (IQR: 51-69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87-189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 \% of the patients with deep vein/arm thrombosis in 39 \%, pulmonary embolism in 22 \%, and major bleeding in 17 \%. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 \%CI 1.3-10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. Conclusions Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..}, language = {en} } @article{SchuhmannBieberFrankeetal.2021, author = {Schuhmann, Michael K. and Bieber, Michael and Franke, Maximilian and Kollikowski, Alexander M. and Stegner, David and Heinze, Katrin G. and Nieswandt, Bernhard and Pham, Mirko and Stoll, Guido}, title = {Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice}, series = {Journal of Neuroinflammation}, volume = {18}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-021-02095-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259172}, pages = {46}, year = {2021}, abstract = {Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{-/-}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.}, language = {en} } @article{WinterAndelovicKampfetal.2021, author = {Winter, Patrick M. and Andelovic, Kristina and Kampf, Thomas and Hansmann, Jan and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Zernecke, Alma and Herold, Volker}, title = {Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {23}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-021-00725-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259152}, pages = {34}, year = {2021}, abstract = {Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{-/-}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{-/-}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{-/-}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.}, language = {en} } @article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} } @article{ChenRawatSamikannuetal.2021, author = {Chen, Chunguang and Rawat, Divya and Samikannu, Balaji and Bender, Markus and Preissner, Klaus T. and Linn, Thomas}, title = {Platelet glycoprotein VI-dependent thrombus stabilization is essential for the intraportal engraftment of pancreatic islets}, series = {American Journal of Transplantation}, volume = {21}, journal = {American Journal of Transplantation}, doi = {10.1111/ajt.16375}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224471}, pages = {2079 -- 2089}, year = {2021}, abstract = {Platelet activation and thrombus formation have been implicated to be detrimental for intraportal pancreatic islet transplants. The platelet-specific collagen receptor glycoprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the subsequent release of secondary mediators. In aggregometry and in a microfluidic dynamic assay system modeling flow in the portal vein, pancreatic islets promoted platelet aggregation and triggered thrombus formation, respectively. While platelet GPVI deficiency did not affect the initiation of these events, it was found to destabilize platelet aggregates and thrombi in this process. Interestingly, while no major difference was detected in early thrombus formation after intraportal islet transplantation, genetic GPVI deficiency or acute anti-GPVI treatment led to an inferior graft survival and function in both syngeneic mouse islet transplantation and xenogeneic human islet transplantation models. These results demonstrate that platelet GPVI signaling is indispensable in stable thrombus formation induced by pancreatic islets. GPVI deficiency resulted in thrombus destabilization and inferior islet engraftment indicating that thrombus formation is necessary for a successful intraportal islet transplantation in which platelets are active modulators.}, language = {en} } @article{CullmannJahnSpindleretal.2021, author = {Cullmann, Katharina and Jahn, Magdalena and Spindler, Markus and Schenk, Franziska and Manukjan, Georgi and Mucci, Adele and Steinemann, Doris and Boller, Klaus and Schulze, Harald and Bender, Markus and Moritz, Thomas and Modlich, Ute}, title = {Forming megakaryocytes from murine-induced pluripotent stem cells by the inducible overexpression of supporting factors}, series = {Research and Practice in Thrombosis and Haemostasis}, volume = {5}, journal = {Research and Practice in Thrombosis and Haemostasis}, number = {1}, doi = {10.1002/rth2.12453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224565}, pages = {111 -- 124}, year = {2021}, abstract = {Background Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low. Objectives To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA-binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre-B-cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc). Methods To avoid off-target effects, we generated iPSCs carrying the reverse tetracycline-responsive transactivator M2 (rtTA-M2) in the Rosa26 locus and expressed the factors from Tet-inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation. Results Overexpression of GATA1 and Pbx1 increased MK output 2- to 2.5-fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro-generated platelets were functional in spreading on fibrinogen or collagen-related peptide. Conclusion We demonstrate that the use of rtTA-M2 transgenic iPSCs transduced with Tet-inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production.}, language = {en} } @article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @article{LepaMoeller‐KeruttStoeltingetal.2020, author = {Lepa, Carolin and M{\"o}ller-Kerutt, Annika and St{\"o}lting, Miriam and Picciotto, Cara and Eddy, Mee-Ling and Butt, Elke and Kerjaschki, Dontscho and Korb-Pap, Adelheid and Vollenbr{\"o}ker, Beate and Weide, Thomas and George, Britta and Kremerskothen, Joachim and Pavenst{\"a}dt, Hermann}, title = {LIM and SH3 protein 1 (LASP-1): A novel link between the slit membrane and actin cytoskeleton dynamics in podocytes}, series = {The FASEB Journal}, volume = {34}, journal = {The FASEB Journal}, number = {4}, doi = {10.1096/fj.201901443R}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215522}, pages = {5453 -- 5464}, year = {2020}, abstract = {The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane-associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP-1, an actin-binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP-1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP-1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton-bound protein. We identify CD2AP as a novel LASP-1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin-angiotensin-aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP-1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.}, language = {en} } @phdthesis{Nehring2021, author = {Nehring, Helene}, title = {Role of cholesterol intermediates in supporting cell survival}, doi = {10.25972/OPUS-21763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217631}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cell death is an essential aspect of life that plays an important role for successful development and tissue remodeling as well as for diseases. There are several different types of cell death that differ from each other in morphological, functional and biochemical ways. Regulated cell death that occurs in physiological processes is generally equated with programmed cell death (PCD), whereby apoptosis is the most studied form of PCD. Ferroptosis is a form of regulated cell death and unique in its requirements for iron and lipid peroxidation. It is linked to numerous biological processes, such as amino acid metabolism, phospholipid metabolism and sterol synthesis. Cholesterol biosynthesis is a complex pathway with a large number of enzymes and substrates that are potential target points for cellular dysfunctions. Motivated by the results from a CRISPR-based genetic screening in this thesis, we focused on 7-dehydrocholesterol reductase (DHCR7), the enzyme responsible for conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. In this work we focused on the ferroptosis sensitive cell line HT1080 and generated a series of models to address the importance of DHCR7 in ferroptosis. Using CRISPR/Cas9, HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines were generated and used to validate their sensitivity against ferroptosis inducers and sterol consumption. We could show that 7-DHC is a strong antiferroptotic agent that could prevent cell death in genetic models as well as when supplemented directly to cells. Importantly, all the results obtained were subsequently confirmed in isogenic reconstituted pairs from the HT1080 DHCR7/SC5D_KO. Moreover, we demonstrate that this protective effect is not due to an inherent and unspecific resistance as the sensitivity to non-ferroptotic stimuli was equally effective in killing the HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines. We could also show that selenium present in the media has a strong impact on the activity of 7-DHC and this is because in its absence the effective concentration is rapidly decreased. Surprisingly we also demonstrate that removing sterol from cell culture triggers ferroptosis in cells unable to synthesize 7-DHC, suggestive that this could be used as a novel mechanism to trigger ferroptosis. Ultimately, in the present work we could show that unlike previously reported, 7-DHC is not only a toxic intermediate of the cholesterol biosynthesis pathway but under specific circumstances it has a strong pro-survival effect.}, subject = {Zelltod}, language = {en} } @phdthesis{Aurbach2021, author = {Aurbach, Katja}, title = {Studies on the role of the cytoskeleton in platelet production}, doi = {10.25972/OPUS-23466}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Platelets are small anucleated cell fragments that originate from megakaryocytes (MKs), which are large cells located in the bone marrow (BM). MKs extend long cytoplasmic protrusions, a process which is called proplatelet formation, into the lumen of the sinusoidal vessels where platelets are sized by the bloodstream. During the process of platelet biogenesis, segments of the MK penetrate the endothelium and, through cytoskeletal remodeling inside the MK, proplatelet fragments are released. Rho GTPases, such as RhoA and RhoB, are critically involved in cytoskeletal rearrangements of both the actin and the tubulin cytoskeleton. The first part of this thesis concentrated on the protein RhoB and its involvement in cytoskeletal organization in MKs and platelets. Single knockout (KO) mice lacking RhoB had a minor microthrombocytopenia, which means a smaller platelet size and reduced platelet number, accompanied by defects in the microtubule cytoskeleton in both MKs and platelets. In particular, tubulin organization and stability, which is regulated by posttranslational modifications of α-tubulin, were disturbed in RhoB-/- platelets. In contrast, RhoB-/- MKs produced abnormally shaped proplatelets but had unaltered posttranslational modifications of α-tubulin. The second part focused on the influence of RhoA and RhoB on MK localization and platelet biogenesis in murine BM. Many intact RhoA-/- MKs are able to transmigrate through the endothelial layer and stay attached to the vessel wall, whereas only 1\% of wildtype (wt) MKs are detectable in the intrasinusoidal space. Concomitant deficiency of RhoA and RhoB reverts this transmigration and results in macrothrombocytopenia, MK clusters around the vessel in the BM and defective MK development. The underlying mechanism that governs MKs to distinct localizations in the BM is poorly understood, thus this thesis suggests that this process may be dependent on RhoB protein levels, as RhoA deficiency is coincided with increased RhoB levels in MKs and platelets. The third part of this thesis targeted the protein PDK1, a downstream effector of Rho GTPases, in regard to MK maturation and polarization throughout thrombopoiesis. MK- and platelet-specific KO in mice led to a significant macrothrombocytopenia, impaired actin cytoskeletal reorganization during MK spreading and proplatelet formation, with defective MK maturation. This was associated with decreased PAK activity and, subsequently, phosphorylation of its substrates LIMK and Cofilin. Together, the observations of this thesis highlight the importance of Rho GTPases and their downstream effectors on the regulation of the MK and platelet cytoskeleton.}, subject = {Megakaryozyt}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{HerrmannMuellerOrthetal.2020, author = {Herrmann, Andreas B. and M{\"u}ller, Martha-Lena and Orth, Martin F. and M{\"u}ller, J{\"o}rg P. and Zernecke, Alma and Hochhaus, Andreas and Ernst, Thomas and Butt, Elke and Frietsch, Jochen J.}, title = {Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance}, series = {Journal of Cellular and Molecular Medicine}, volume = {24}, journal = {Journal of Cellular and Molecular Medicine}, number = {5}, doi = {10.1111/jcmm.14910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214122}, pages = {2942 -- 2955}, year = {2020}, abstract = {Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.}, language = {en} } @article{RommelMildeEberleetal.2020, author = {Rommel, Marcel G. E. and Milde, Christian and Eberle, Regina and Schulze, Harald and Modlich, Ute}, title = {Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target}, series = {Anatomia, Histologia, Embryologia}, volume = {49}, journal = {Anatomia, Histologia, Embryologia}, number = {5}, doi = {10.1111/ahe.12521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213610}, pages = {606 -- 619}, year = {2020}, abstract = {Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.}, language = {en} } @phdthesis{Stetter2021, author = {Stetter, Maurice}, title = {LC3-associated phagocytosis seals the fate of the second polar body in \(Caenorhabditis\) \(elegans\)}, doi = {10.25972/OPUS-23198}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work investigates the death and degradation of the second polar body of the nematode C. elegans in order to improve our understanding how pluripotent undifferentiated cells deal with dying cells. With the use of fluorescence microscopy this work demonstrates that both polar bodies loose membrane integrity early. The second polar body has contact to embryonic cells and gets internalized, dependent on the Rac1-ortholog CED-10. The polar body gets degraded via LC3-associated phagocytosis. While lysosome recruitment depends on RAB-7, LC3 does not improve lysosome recruitment but still accelerates polar body degradation. This work establishes the second polar body as a genetic model to study cell death and LC3-associated phagocytosis and has revealed further aspects of phagosome maturation and degradation.}, subject = {Polk{\"o}rper}, language = {en} } @article{EndresKneitzOrthetal.2016, author = {Endres, Marcel and Kneitz, Susanne and Orth, Martin F. and Perera, Ruwan K. and Zernecke, Alma and Butt, Elke}, title = {Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1)}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {39}, doi = {10.18632/oncotarget.11720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176920}, pages = {64244-64259}, year = {2016}, abstract = {The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.}, language = {en} } @article{StrittNurdenFavieretal.2016, author = {Stritt, Simon and Nurden, Paquita and Favier, Remi and Favier, Marie and Ferioli, Silvia and Gotru, Sanjeev K. and van Eeuwijk, Judith M.M. and Schulze, Harald and Nurden, Alan T. and Lambert, Michele P. and Turro, Ernest and Burger-Stritt, Stephanie and Matsushita, Masayuki and Mittermeier, Lorenz and Ballerini, Paola and Zierler, Susanna and Laffan, Michael A. and Chubanov, Vladimir and Gudermann, Thomas and Nieswandt, Bernhard and Braun, Attila}, title = {Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg\(^{2+}\) homeostasis and cytoskeletal architecture}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173843}, year = {2016}, abstract = {Mg\(^{2+}\) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg\(^{2+}\)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7\(^{fl/fl-Pf4Cre}\)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7\(^{fl/fl-Pf4Cre}\) MKs, which is rescued by Mg\(^{2+}\) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice.}, language = {en} } @article{TegtmeyerMoodleyYamaokaetal.2016, author = {Tegtmeyer, Nicole and Moodley, Yoshan and Yamaoka, Yoshio and Pernitzsch, Sandy Ramona and Schmidt, Vanessa and Traverso, Francisco Rivas and Schmidt, Thomas P. and Rad, Roland and Yeoh, Khay Guan and Bow, Ho and Torres, Javier and Gerhard, Markus and Schneider, Gisbert and Wessler, Silja and Backert, Steffen}, title = {Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA}, series = {Molecular Microbiology}, volume = {99}, journal = {Molecular Microbiology}, number = {5}, doi = {10.1111/mmi.13276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190774}, pages = {925-944}, year = {2016}, abstract = {HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour-suppressor E-cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H.pylori isolates in gastric biopsy material from infected patients. Differential RNA-sequencing (dRNA-seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H.pylori, but not other bacteria. We show that Helicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti-bacterial therapy.}, language = {en} } @article{SimsekyilmazLiehnWeinandyetal.2016, author = {Simsekyilmaz, Sakine and Liehn, Elisa A. and Weinandy, Stefan and Schreiber, Fabian and Megens, Remco T. A. and Theelen, Wendy and Smeets, Ralf and Jockenh{\"o}vel, Stefan and Gries, Thomas and M{\"o}ller, Martin and Klee, Doris and Weber, Christian and Zernecke, Alma}, title = {Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179745}, year = {2016}, abstract = {Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE\(^{-/-}\) carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches.}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} } @phdthesis{Spindler2020, author = {Spindler, Markus}, title = {The role of the adhesion and degranulation promoting adapter protein (ADAP) in platelet production}, doi = {10.25972/OPUS-20097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Although this process is fundamental to maintain normal platelet counts in circulation only little is known about the regulation of directed proplatelet formation. As revealed in this thesis, ADAP (adhesion and degranulation promoting adapter protein) deficiency (constitutive as well as MK and platelet-specific) resulted in a microthrombocytopenia in mice, recapitulating the clinical hallmark of patients with mutations in the ADAP gene. The thrombocytopenia was caused by a combination of an enhanced removal of platelets from the circulation by macrophages and a platelet production defect. This defect led to an ectopic release of (pro)platelet-like particles into the bone marrow compartment, with a massive accumulation of such fragments around sinusoids. In vitro studies of cultured BM cell-derived MKs revealed a polarization defect of the demarcation membrane system, which is dependent on F-actin dynamics. ADAP-deficient MKs spread on collagen and fibronectin displayed a reduced F-actin content and podosome density in the lowest confocal plane. In addition, ADAP-deficient MKs exhibited a reduced capacity to adhere on Horm collagen and in line with that the activation of beta1-integrins in the lowest confocal plane of spread MKs was diminished. These results point to ADAP as a novel regulator of terminal platelet formation. Beside ADAP-deficient mice, three other knockout mouse models (deficiency for profilin1 (PFN1), Wiskott-Aldrich-syndrome protein (WASP) and Actin-related protein 2/3 complex subunit 2 (ARPC2)) exist, which display ectopic release of (pro)platelet-like particles. As shown in the final part of the thesis, the pattern of the ectopic release of (pro)platelet-like particles in these genetically modified mice (PFN1 and WASP) was comparable to ADAP-deficient mice. Furthermore, all tested mutant MKs displayed an adhesion defect as well as a reduced podosome density on Horm collagen. These results indicate that similar mechanisms might apply for ectopic release.}, language = {en} } @article{KollikowskiSchuhmannNieswandtetal.2020, author = {Kollikowski, Alexander M. and Schuhmann, Michael K. and Nieswandt, Bernhard and M{\"u}llges, Wolfgang and Stoll, Guido and Pham, Mirko}, title = {Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke}, series = {Annals of Neurology}, volume = {87}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212168}, pages = {466-479}, year = {2020}, abstract = {Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T-cell chemoattractant CXCL-11. Finally, we found evidence that short-term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466-479}, language = {en} } @article{ManukjanWiegeringReindletal.2020, author = {Manukjan, Georgi and Wiegering, Verena and Reindl, Tobias and Strauß, Gabriele and Klopocki, Eva and Schulze, Harald and Andres, Oliver}, title = {Novel variants in FERMT3 and RASGRP2 - Genetic linkage in Glanzmann-like bleeding disorders}, series = {Pediatric Blood \& Cancer}, volume = {67}, journal = {Pediatric Blood \& Cancer}, number = {2}, doi = {10.1002/pbc.28078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208129}, pages = {e28078}, year = {2020}, abstract = {Defects of platelet intracellular signaling can result in severe platelet dysfunction. Several mutations in each of the linked genes FERMT3 and RASGRP2 on chromosome 11 causing a Glanzmann-like bleeding phenotype have been identified so far. We report on novel variants in two unrelated pediatric patients with severe bleeding diathesis—one with leukocyte adhesion deficiency type III due to a homozygous frameshift in FERMT3 and the other with homozygous variants in both, FERMT3 and RASGRP2 . We focus on the challenging genetic and functional variant assessment and aim to accentuate the risk of obtaining misleading results due to the phenomenon of genetic linkage.}, language = {en} } @article{DeolLorenzStrieter2019, author = {Deol, Kirandeep K. and Lorenz, Sonja and Strieter, Eric R.}, title = {Enzymatic logic of ubiquitin chain assembly}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {835}, doi = {10.3389/fphys.2019.00835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201731}, year = {2019}, abstract = {Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.}, language = {en} } @article{SchuhmannKraftBieberetal.2019, author = {Schuhmann, Michael K. and Kraft, Peter and Bieber, Michael and Kollikowski, Alexander M. and Schulze, Harald and Nieswandt, Bernhard and Pham, Mirko and Stegner, David and Stoll, Guido}, title = {Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms20082019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201700}, year = {2019}, abstract = {Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{-/-}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke.}, language = {en} } @phdthesis{Huber2020, author = {Huber, Philipp}, title = {Megakaryocyte localization in the bone marrow depending on the knock-out of small Rho GTPases}, doi = {10.25972/OPUS-20051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This work focuses on megakaryocyte physiology with a special interest in the description of the localization of megakaryocytes in the bone marrow in mice single-deficient of the small Rho GTPase RhoA or double-deficient for RhoA and Cdc42. RhoA knock-out mice revealed intraluminal presence of megakaryocytes in bone marrow sinusoids. In a next step, potential aggravation, attenuation or preservation of this phenotype was studied in related mouse strains and also in the setting of platelet depletion and blockage of important megakaryocyte and platelet glycoprotein receptors in order to understand underlying singling pathways. A second part of this thesis studied the role of RhoF in filopodia formation and scrutinized RhoF deficient mice with regard to platelet activation and degranulation.}, subject = {Histologie}, language = {en} } @article{StegnerKlausNieswandt2019, author = {Stegner, David and Klaus, Vanessa and Nieswandt, Bernhard}, title = {Platelets as modulators of cerebral ischemia/reperfusion injury}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2505}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195748}, year = {2019}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.}, language = {en} } @article{ChilloKleinertLautzetal.2016, author = {Chillo, Omary and Kleinert, Eike Christian and Lautz, Thomas and Lasch, Manuel and Pagel, Judith-Irina and Heun, Yvonn and Troidl, Kerstin and Fischer, Silvia and Caballero-Martinez, Amelia and Mauer, Annika and Kurz, Angela R. M. and Assmann, Gerald and Rehberg, Markus and Kanse, Sandip M. and Nieswandt, Bernhard and Walzog, Barbara and Reichel, Christoph A. and Mannell, Hanna and Preissner, Klaus T. and Deindl, Elisabeth}, title = {Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {8}, doi = {10.1016/j.celrep.2016.07.040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164800}, pages = {2197-2207}, year = {2016}, abstract = {The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.}, language = {en} } @article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} } @article{StegnervanEeuwijkAngayetal.2017, author = {Stegner, David and van Eeuwijk, Judith M.M. and Angay, Oğuzhan and Gorelashvili, Maximilian G. and Semeniak, Daniela and Pinnecker, J{\"u}rgen and Schmithausen, Patrick and Meyer, Imke and Friedrich, Mike and D{\"u}tting, Sebastian and Brede, Christian and Beilhack, Andreas and Schulze, Harald and Nieswandt, Bernhard and Heinze, Katrin G.}, title = {Thrombopoiesis is spatially regulated by the bone marrow vasculature}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {127}, doi = {10.1038/s41467-017-00201-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170591}, year = {2017}, abstract = {In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.}, language = {en} } @article{GilPulidoCochainLippertetal.2017, author = {Gil-Pulido, Jesus and Cochain, Clement and Lippert, Malte A. and Schneider, Nicole and Butt, Elke and Am{\´e}zaga, N{\´u}ria and Zernecke, Alma}, title = {Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0181947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170535}, pages = {e0181947}, year = {2017}, abstract = {Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs) bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3) is required for the development of classical CD8α\(^{+}\) and CD103\(^{+}\) DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr\(^{-/-}\))-deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α\(^{+}\) and CD103\(^{+}\) antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis.}, language = {en} } @phdthesis{Kastner2019, author = {Kastner, Carolin}, title = {LASP1 - ein neuer, phosphorylierungs-abh{\"a}ngiger Bindungspartner von CrkL in CML}, doi = {10.25972/OPUS-18753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187539}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Verst{\"a}ndnis der molekularen Mechanismen, die einer malignen Erkrankung zugrunde liegen, ist der Schl{\"u}ssel zur Entwicklung zielgerichteter und effektiver therapeutischer M{\"o}glichkeiten. F{\"u}r das LIM und SH3 Dom{\"a}nen Protein 1, LASP1, konnte im Kontext zahl-reicher Tumorerkrankungen wie dem Mamma-Karzinom, dem Prostata-Karzinom oder dem Ovarial-Karzinom eine {\"U}berexpression ebenso wie eine Korrelation mit Aggressivit{\"a}t und Prognose der Tumorerkrankung gezeigt werden. Bisher war eine Relevanz von LASP1 jedoch nur f{\"u}r solide Tumorerkrankungen nachgewiesen worden. K{\"u}rzlich allerdings wurde lasp1 als eines von 6 Genen identifiziert, die eine exaktere Vorhersage von Krankheitsprogress und -rezidiv bei Patienten mit einer chronischen myeloischen Leuk{\"a}mie (CML) zulassen sollen. Zudem konnte, wie bereits bei zahlreichen anderen, soliden Tumorerkrankungen, eine signifikante {\"U}berexpression des lasp1-Gens in CML-Zellen nachgewiesen werden.Basierend auf diesen neuen Erkenntnissen besch{\"a}ftigte ich mich im Rahmen dieser Arbeit mit der Frage, welche Funktion LASP1 im Netz der einer CML zugrunde liegenden, molekularen Mechanismen {\"u}bernimmt. Mittels verschiedener Interaktionsassays konnte LASP1 als ein neuer, phosphorylierungs-abh{\"a}ngiger Bindungspartner von CrkL, dem wohl prominentesten Substrat der BCR-ABL-Kinase, identifiziert werden. Dabei impliziert das Attribut „phosphorylierungs-abh{\"a}ngig" sowohl den Phosphorylierungsstatus von LASP1 als auch des Interaktionspartners CrkL. Wie in Vorarbeiten gezeigt, stellt das Tyrosin 171 in der Aminos{\"a}urensequenz von LASP1 eine Phosphorylierungsstelle f{\"u}r die BCR-ABL-Kinase dar; mit LASP1 wurde somit auch ein neues Substrat dieser konstitutiv aktiven Tyrosinkinase entdeckt. Phosphoryliert an Tyrosin 171 kann LASP1 an die SH2-Dom{\"a}ne von CrkL, genauer an das FLVR-Motif innerhalb dieser, binden. Jedoch selbst an Tyrosin 207 durch die BCR-ABL-Kinase phosphoryliert, blockiert CrkL die eigene SH2-Dom{\"a}ne durch intramolekulare Wechselwirkungen f{\"u}r andere Protein-Protein-Interaktionen in gewissem Umfang. Diese neu gewonnenen Erkenntnisse liefern ein weiteres Puzzlest{\"u}ck zum Verst{\"a}ndnis des molekularen Netzwerks, das einer CML-Erkrankung zugrunde liegt und tragen so dazu bei, die Therapieoptionen dieser stetig zu verbessern.}, subject = {Chronisch-myeloische Leuk{\"a}mie}, language = {de} } @article{ManukjanRippergerVenturinietal.2016, author = {Manukjan, Georgi and Ripperger, Tim and Venturini, Letizia and Stadler, Michael and G{\"o}hring, Gudrun and Schambach, Axel and Schlegelberger, Brigitte and Steinemann, Doris}, title = {GABP is necessary for stem/progenitor cell maintenance and myeloid differentiation in human hematopoiesis and chronic myeloid leukemia}, series = {Stem Cell Research}, volume = {16}, journal = {Stem Cell Research}, number = {3}, doi = {10.1016/j.scr.2016.04.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168165}, pages = {677-681}, year = {2016}, abstract = {Maintenance of hematopoietic stem cells and their potential to give rise to progenitors of differentiated lymphoid and myeloid cells are accomplished by a network of regulatory processes. As a part of this network, the heteromeric transcription factor GA-binding protein (GABP) plays a crucial role in self-renewal of murine hematopoietic and leukemic stem cells. Here, we report the consequences of functional impairment of GABP in human hematopoietic and in leukemic stem/progenitor cells. Ectopic overexpression of a dominant-negative acting GABP mutant led to impaired myeloid differentiation of CD34\(^{+}\) hematopoietic stem/progenitor cells obtained from healthy donors. Moreover, drastically reduced clonogenic capacity of leukemic stem/progenitor cells isolated from bone marrow aspirates of chronic myeloid leukemia (CML) patients underlines the importance of GABP on stem/progenitor cell maintenance and confirms the relevance of GABP for human myelopoiesis in healthy and diseased states.}, language = {en} } @phdthesis{Irmisch2019, author = {Irmisch, Linda}, title = {The role of septins and other regulatory proteins in abscission and midbody fate in C. elegans embryos}, doi = {10.25972/OPUS-18324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-183244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Abscission marks the last step of cytokinesis and gives rise to two physically separated daughter cells and a midbody remnant. This work studies abscission by examining the extent of the abscission failure in C. elegans septin and ESCRT mutants with the help of the ZF1-degradation technique. The ZF1 technique is also applied to discern a possible role for PI3K during abscission. Lastly, we test the role of proteins required for macroautophagy but not for LC3-associated phagocytosis (LAP) and show that after release into the extracellular space, the midbody is resolved via LAP.}, subject = {Zellteilung}, language = {en} } @phdthesis{Heck2019, author = {Heck, Johannes}, title = {Role of cyclase-associated protein 2 in platelet function and description of an inherited macrothrombocytopenia}, doi = {10.25972/OPUS-17996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cyclase-associated protein (CAP)2 is an evolutionarily highly conserved actin-binding protein implicated in striated muscle development, carcinogenesis, and wound healing in mammals. To date, the presence as well as the putative role(s) of CAP2 in platelets, however, remain unknown. Therefore, mice constitutively lacking CAP2 (Cap2gt/gt mice) were examined for platelet function. These studies confirmed the presence of both mammalian CAP isoforms, CAP1 and CAP2, in platelets. CAP2-deficient platelets were slightly larger than WT controls and displayed increased GPIIbIIIa activation and P-selectin recruitment in response to the (hem)ITAM-specific agonists collagen-related peptide and rhodocytin. However, spreading of CAP2-deficient platelets on a fibrinogen matrix was unaltered. In conclusion, the functionally redundant CAP1 isoform may compensate for the lack of CAP2 in murine platelets. Moreover, the studies presented in this thesis unveiled a severe macrothrombocytopenia that occurred independently of the targeted Cap2 allele and which was preliminarily termed orphan (orph). Crossing of the respective mice to C57BL/6J wild-type animals revealed an autosomal recessive inheritance. Orph mice were anemic and developed splenomegaly as well as BM fibrosis, suggesting a general hematopoietic defect. Strikingly, BM MKs of orph mice demonstrated an aberrant morphology and appeared to release platelets ectopically into the BM cavity, thus pointing to defective thrombopoiesis as cause for the low platelet counts. Orph platelets exhibited marked activation defects and spread poorly on fibrinogen. The unaltered protein content strongly suggested a defective alpha-granule release to account for the observed hyporesponsiveness. In addition, the cytoskeleton of orph platelets was characterized by disorganized microtubules and accumulations of filamentous actin. However, further experiments are required to elucidate the activation defects and cytoskeletal abnormalities in orph platelets. Above all, the gene mutation responsible for the phenotype of orph mice needs to be determined by next-generation sequencing in order to shed light on the underlying genetic and mechanistic cause.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Barnsteiner2019, author = {Barnsteiner, Stefanie}, title = {CCR6 kontrolliert selektiv die Monozyten-vermittelte Entz{\"u}ndungsreaktion in der Atherosklerose}, doi = {10.25972/OPUS-17910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Der Chemokinrezeptor CCR6 wird von einer Vielzahl unterschiedener Zelltypen exprimiert, wie zum Beispiel Monozyten, Th17-Zellen und regulatorische T-Zellen, die im Zusammenhang mit der Entstehung von Atherosklerose stehen. Um die Bedeutung von CCR6 in der Pathogenese der Atherosklerose bestimmen zu k{\"o}nnen, wurden CCR6-defiziente (Ccr6-/- ) M{\"a}use mit low-density lipoprotein receptordefizienten (Ldlr-/-) M{\"a}usen gekreuzt, um Tiere zu erhalten, die anf{\"a}llig f{\"u}r Atherosklerose und zudem CCR6-defizient sind. Nach acht Wochen pro-atherogener, fettreicher western-type diet war die Auspr{\"a}gung der atherosklerotischen L{\"a}sionen im Aortensinus und der gesamten Aorta, sowie deren Gehalt an Plaquemakrophagen in den Ccr6-/-Ldlr-/- Tieren im Vergleich zu den Ldlr-/- Kontrolltieren signifikant vermindert. Die lokale und die systemische Verteilung von T-Zellen sowie die H{\"a}ufigkeit von Th1-, Th17-Zellen und regulatorischen T-Zellen blieb hingegen unver{\"a}ndert. Im Gegensatz dazu reduzierte sich die Zahl der im Blut zirkulierenden Gr-1high und Gr-1low Monozyten in den Ccr6-/-Ldlr-/- Tieren deutlich. Weiter konnte gezeigt werden, dass {\"u}ber CCR6 in vitro die Adh{\"a}sion von Monozyten an inflammatorisch ver{\"a}ndertem Endothel und in vivo die Adh{\"a}sion von Leukozyten an das Endothel der Karotiden vermittelt wird. Des Weiteren wurden in einem air pouch-Modell f{\"u}r akute Entz{\"u}ndungsreaktionen mittels CCR6 spezifisch Monozyten, aber keine TZellen rekrutiert. Summa summarum konnte die Bedeutung von CCR6 auf verschiedenen Ebenen der Pathogenese der Atherosklerose gezeigt werden: W{\"a}hrend CCR6 f{\"u}r die Hypercholesterin{\"a}mie assoziierte adaptive Immunantwort entbehrlich ist, reguliert es die Mobilisierung, Adh{\"a}sion und Rekrutierung von Monozyten und kontrolliert {\"u}ber diese Mechanismen die Akkumulation von Makrophagen und Genese atherosklerotischer L{\"a}sionen. CCR6 und sein Ligand CCL20 k{\"o}nnten somit vielversprechende Ziele neuer pharmakologischer Therapieans{\"a}tze sein, um auch die Atherogenese im Menschen zu unterbinden. Die Ergebnisse der Dissertation wurden im Dezember 2013 im Journal Thrombosis and Haematostasis unter dem Titel "CCR6 selectively promotes monocyte mediated inflammation and atherogenesis in mice" in geteilter Erstautorenschaft von Helga Manthey, Cl{\´e}ment Cochain und Stefanie Barnsteiner ver{\"o}ffentlicht (PMID: 24114205).}, subject = {Atherosklerose}, language = {de} } @phdthesis{Semeniak2018, author = {Semeniak, Daniela}, title = {Role of bone marrow extracellular matrix proteins on platelet biogenesis and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelets, small anucleated blood cells responsible for hemostasis, interact at sights of injury with several exposed extracellular matrix (ECM) proteins through specific receptors. Ligand binding leads to activation, adhesion and aggregation of platelets. Already megakaryocytes (MKs), the immediate precursor cells in bone marrow (BM), are in constant contact to these ECM proteins (ECMP). The interaction of ECMP with MKs is, in contrast to platelets, less well understood. It is therefore important to study how MKs interact with sinusoids via the underlying ECMP. This thesis addresses three major topics to elucidate these interactions and their role in platelet biogenesis. First, we studied the topology of ECMP within BM and their impact on proplatelet formation (PPF) in vitro. By establishing a four-color immunofluorescence microscopy we localized collagens and other ECMP and determined their degree of contact towards vessels and megakaryocytes (MKs). In in vitro assays we could demonstrate that Col I mediates increased MK adhesion, but inhibits PPF by collagen receptor GPVI. By immunoblot analyses we identified that the signaling events underyling this inhibition are different from those in platelet activation at the Src family kinase level. Second, we determined the degree of MK-ECM interaction in situ using confocal laser scanning microscopy of four-color IF-stained femora and spleen sections. In transgenic mouse models lacking either of the two major collagen receptors we could show that these mice have an impaired association of MKs to collagens in the BM, while the MK count in spleen increased threefold. This might contribute to the overall unaltered platelet counts in collagen receptor-deficient mice. In a third approach, we studied how the equilibrium of ECMP within BM is altered after irradiation. Collagen type IV and laminin-α5 subunits were selectively degraded at the sinusoids, while the matrix degrading protease MMP9 was upregulated in MKs. Platelet numbers decreased and platelets became hyporesponsive towards agonists, especially those for GPVI activation. Taken together, the results indicate that MK-ECM interaction differs substantially from the well-known platelet-ECM signaling. Future work should further elucidate how ECMP can be targeted to ameliorate the platelet production and function defects, especially in patients after BM irradiation.}, subject = {Knochenmark}, language = {en} } @article{HanTaniosReepsetal.2016, author = {Han, Yanshuo and Tanios, Fadwa and Reeps, Christian and Zhang, Jian and Schwamborn, Kristina and Eckstein, Hans-Henning and Zernecke, Alma and Pelisek, Jaroslav}, title = {Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm}, series = {Clinical Epigenetics}, volume = {8}, journal = {Clinical Epigenetics}, number = {3}, doi = {10.1186/s13148-016-0169-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162557}, year = {2016}, abstract = {Background Epigenetic modifications may play a relevant role in the pathogenesis of human abdominal aortic aneurysm (AAA). The aim of the study was therefore to investigate histone acetylation and expression of corresponding lysine [K] histone acetyltransferases (KATs) in AAA. Results A comparative study of AAA tissue samples (n = 37, open surgical intervention) and healthy aortae (n = 12, trauma surgery) was performed using quantitative PCR, immunohistochemistry (IHC), and Western blot. Expression of the KAT families GNAT (KAT2A, KAT2B), p300/CBP (KAT3A, KAT3B), and MYST (KAT5, KAT6A, KAT6B, KAT7, KAT8) was significantly higher in AAA than in controls (P ≤ 0.019). Highest expression was observed for KAT2B, KAT3A, KAT3B, and KAT6B (P ≤ 0.007). Expression of KAT2B significantly correlated with KAT3A, KAT3B, and KAT6B (r = 0.705, 0.564, and 0.528, respectively, P < 0.001), and KAT6B with KAT3A, KAT3B, and KAT6A (r = 0.407, 0.500, and 0.531, respectively, P < 0.05). Localization of highly expressed KAT2B, KAT3B, and KAT6B was further characterized by immunostaining. Significant correlations were observed between KAT2B with endothelial cells (ECs) (r = 0.486, P < 0.01), KAT3B with T cells and macrophages, (r = 0.421 and r = 0.351, respectively, P < 0.05), KAT6A with intramural ECs (r = 0.541, P < 0.001) and with a contractile phenotype of smooth muscle cells (SMCs) (r = 0.425, P < 0.01), and KAT6B with T cells (r = 0.553, P < 0.001). Furthermore, KAT2B was associated with AAA diameter (r = 0.382, P < 0.05), and KAT3B, KAT6A, and KAT6B correlated negatively with blood urea nitrogen (r = -0.403, -0.408, -0.478, P < 0.05). In addtion, acetylation of the histone substrates H3K9, H3K18 and H3K14 was increased in AAA compared to control aortae. Conclusions Our results demonstrate that aberrant epigenetic modifications such as changes in the expression of KATs and acetylation of corresponding histones are present in AAA. These findings may provide new insight in the pathomechanism of AAA.}, language = {en} } @phdthesis{Orth2018, author = {Orth, Martin Franz}, title = {Generierung und funktionelle Charakterisierung von stabil transfizierten, induzierbar LASP1 spezifische shRNA exprimierenden RT4- und T24-Blasenkarzinomzelllinien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {LASP1 spielt eine Schl{\"u}sselrolle in verschiedenen physiologischen und pathologischen Prozessen, wie etwa in der Entwicklung, Zellstruktur, Zellkommunikation, Tumorgenese und Metastasierung. Die Vielseitigkeit von LASP1 ist haupts{\"a}chlich durch seine besondere Proteinstruktur bedingt, die eine Interaktion mit vielen verschiedenen Bindepartnern erm{\"o}glicht. Effekte von LASP1 werden aber wahrscheinlich nicht nur durch cytosolische Interaktion mit Bindepartnern vermittelt, sondern auch, in Folge einer Translokation in den Zellkern, durch nukle{\"a}re Interaktion, evtl. als transkriptioneller Co-Faktor. Besonders die Rolle von LASP1 in diversen Krebserkrankungen stand in den letzten Jahren im Fokus der Forschung. Sowohl in Karzinomen, als auch in Medulloblastom und Leuk{\"a}mien w{\"a}chst die Evidenz f{\"u}r eine LASP1-{\"U}berexpression, die vor allem durch fehlende microRNA Regulation und Mutationen im p53 Tumorsuppressor bedingt scheint. Die hohe LASP1-Expression konnte in vielen in vitro und in vivo Studien mit vermehrter Proliferation, Migration und/ oder Invasion von Krebszelllinien in direkten Zusammenhang gebracht werden. Dieser Effekt von LASP1 auf Tumoraggressivit{\"a}t ist eine m{\"o}gliche Erkl{\"a}rung f{\"u}r die mit hoher LASP1-Expression korrelierte schlechtere Prognose in verschiedenen Krebserkrankungen. Das Transitionalzellkarzinom ist die f{\"u}nfh{\"a}ufigste Krebserkrankung des Menschen und weist eine hohe Rezidivrate auf. Daher sind regelm{\"a}ßige Nachsorgeuntersuchungen notwendig. Angesichts bisher fehlender verl{\"a}sslicher Biomarker f{\"u}r das Transitionalzellkarzinom ist die Zystoskopie weiterhin der Goldstandard in der Nachsorge. Diese wird aber von Patienten als unangenehm empfunden, ist mit einem Infektionsrisiko verbunden, von der Erfahrung des Untersuchers abh{\"a}ngig und kostenintensiv. Tats{\"a}chlich ist das Transitionalzellkarzinom eine der teuersten Krebserkrankungen in der Nachsorge, weshalb die Entwicklung alternativer Diagnostikverfahren auch gesundheits{\"o}konomische Relevanz hat. LASP1 wurde als ein vielversprechender Biomarker des Transitionalzellkarzinom-Rezidivs identifiziert, der durch einfache Proteinmengenbestimmung mittels Western Blot im Urinpellet evaluiert werden kann. Zum damaligen Zeitpunkt gab es außerdem bereits erste Hinweise auf eine funktionelle Relevanz von LASP1 im Blasenkarzinom in vitro. Angesichts dieser Erkenntnisse wurden als Ziele dieser Arbeit formuliert, 1) die Generierung von stabil transfizierten, induzierbar LASP1 spezifische shRNA exprimierenden Transitionalzellkarzinomzelllinien, 2) die funktionelle Charakterisierung eines LASP1-Knockdowns in selbigen in vitro, und 3) der Vergleich von Eigenschaften von LASP1 im Transitionalzellkarzinom mit denen in anderen Karzinomen. F{\"u}r die zwei Transitionalzellkarzinomzelllinien T24 und RT4 konnte eine 4-5-Fache LASP1-{\"U}berexpression, verglichen mit normalem Urothel, gezeigt werden. Beide Zelllinien wurden erfolgreich mit einem induzierbar shRNA gegen LASP1 exprimierenden Konstrukt transduziert, sodass ein 50 \% LASP1-Knockdown durch Doxycyclin induziert werden kann. Bei der Evaluierung des Effektes des LASP1-Knockdowns auf die Adh{\"a}sion, Proliferation und Migration dieser Zelllinien in vitro konnte eine signifikante Reduktion der Migration in beiden Zelllinien nachgewiesen werden. Passend dazu ergab eine GSEA von TCGA Daten zum Blasenkarzinom eine Korrelation von LASP1-Expression mit diversen Gen-Sets, die mit dem Ph{\"a}notyp Metastasierung annotiert sind. Des Weiteren konnte f{\"u}r T24 und RT4 eine nukle{\"a}re LASP1-Lokalisation nachgewiesen werden, die abh{\"a}ngig von der Serin-146 Phosphorylierung war. Bioinformatische Analysen ergaben eine hochsignifikante, negative Korrelation von LASP1-Expression und miR-203 im Blasenkarzinom. Eine Korrelation von LASP1-Expression mit Prognose konnte mittels TCGA Daten f{\"u}r das Blasenkarzinom nicht festgestellt werden. Jedoch lagen lediglich Expressionsdaten auf mRNA Level vor, die meisten LASP1 mit Prognose assoziierenden Studien basieren hingegen auf Immunhistochemie, also der Expression auf Proteinlevel, welche in Blasenkrebszelllinien von der Expression auf mRNA Level abweichen kann. Die generierten Zelllinien wiesen nach lentiviraler Transduktion, Selektion und Sorten im Vergleich zum Wildtyp teilweise ver{\"a}nderte Zelleigenschaften auf, und ein Verlust des Fluoreszenzsignals des der shRNA vorangestellten tRFP wurde beobachtet. Daher m{\"u}ssen die Zellen bei weiterer Verwendung regelm{\"a}ßig mit Puromycin nachselektioniert werden und die Validit{\"a}t dieser Zellen als Modell f{\"u}r das Transitionalzellkarzinom, besonders im Xenograft Mausmodell, ist kritisch zu hinterfragen. Entsprechend sind die Ergebnisse dieser Arbeit im Einklang mit bisherigen Studien zu LASP1. Damit unterstreicht diese Arbeit einmal mehr die Relevanz von LASP1 in diversen Krebserkrankungen. Weitere Studien zum Wert von LASP1 als prognostischer oder gar diagnostischer Marker erscheinen daher vielversprechend.}, subject = {Biomarker}, language = {de} } @article{SchuhmannGuthmannStolletal.2017, author = {Schuhmann, Michael K. and Guthmann, Josua and Stoll, Guido and Nieswandt, Bernhard and Kraft, Peter and Kleinschnitz, Christoph}, title = {Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation" in mice with acute ischemic stroke}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {18}, doi = {10.1186/s12974-017-0792-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157582}, year = {2017}, abstract = {Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined ("thrombo-inflammation"). Blocking of platelet GPIb can ameliorate thrombo-inflammation.}, language = {en} } @article{WestburyTurroGreeneetal.2015, author = {Westbury, Sarah K and Turro, Ernest and Greene, Daniel and Lentaigne, Claire and Kelly, Anne M and Bariana, Tadbir K and Simeoni, Ilenia and Pillois, Xavier and Attwood, Antony and Austin, Steve and Jansen, Sjoert BG and Bakchoul, Tamam and Crisp-Hihn, Abi and Erber, Wendy N and Favier, R{\´e}mi and Foad, Nicola and Gattens, Michael and Jolley, Jennifer D and Liesner, Ri and Meacham, Stuart and Millar, Carolyn M and Nurden, Alan T and Peerlinck, Kathelijne and Perry, David J and Poudel, Pawan and Schulman, Sol and Schulze, Harald and Stephens, Jonathan C and Furie, Bruce and Robinson, Peter N and van Geet, Chris and Rendon, Augusto and Gomez, Keith and Laffan, Michael A and Lambert, Michele P and Nurden, Paquita and Ouwehand, Willem H and Richardson, Sylvia and Mumford, Andrew D and Freson, Kathleen}, title = {Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders}, series = {Genome Medicine}, volume = {7}, journal = {Genome Medicine}, number = {36}, doi = {10.1186/s13073-015-0151-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143329}, year = {2015}, abstract = {Background: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. Methods: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. Results: We show that 60\% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. Conclusions: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.}, language = {en} } @article{KunzWolfSchulzeetal.2016, author = {Kunz, Meik and Wolf, Beat and Schulze, Harald and Atlan, David and Walles, Thorsten and Walles, Heike and Dandekar, Thomas}, title = {Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools}, series = {Genes}, volume = {8}, journal = {Genes}, number = {1}, doi = {10.3390/genes8010008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147990}, pages = {8}, year = {2016}, abstract = {Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.}, language = {en} } @article{BuschBuschScholzetal.2016, author = {Busch, Albert and Busch, Martin and Scholz, Claus-J{\"u}rgen and Kellersmann, Richard and Otto, Christoph and Chernogubova, Ekaterina and Maegdefessel, Lars and Zernecke, Alma and Lorenz, Udo}, title = {Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology}, series = {International Journal of Molecular Science}, volume = {17}, journal = {International Journal of Molecular Science}, number = {1}, issn = {International Journal of Molecular Science}, doi = {10.3390/ijms17010081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146422}, pages = {81}, year = {2016}, abstract = {Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways.}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{AmmarThahoulyHanaueretal.2015, author = {Ammar, Mohamed Raafet and Thahouly, Tamou and Hanauer, Andr{\´e} and Stegner, David and Nieswandt, Bernhard and Vitale, Nicolas}, title = {PLD1 participates in BDNF-induced signalling in cortical neurons}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14778}, doi = {10.1038/srep14778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139962}, year = {2015}, abstract = {The brain-derived neurotrophic factor BDNF plays a critical role in neuronal development and the induction of L-LTP at glutamatergic synapses in several brain regions. However, the cellular and molecular mechanisms underlying these BDNF effects have not been firmly established. Using in vitro cultures of cortical neurons from knockout mice for Pld1 and Rsk2, BDNF was observed to induce a rapid RSK2-dependent activation of PLD and to stimulate BDNF ERK1/2-CREB and mTor-S6K signalling pathways, but these effects were greatly reduced in Pld1\(^{-/-}\) neurons. Furthermore, phospho-CREB did not accumulate in the nucleus, whereas overexpression of PLD1 amplified the BDNF-dependent nuclear recruitment of phospho-ERK1/2 and phospho-CREB. This BDNF retrograde signalling was prevented in cells silenced for the scaffolding protein PEA15, a protein which complexes with PLD1, ERK1/2, and RSK2 after BDNF treatment. Finally PLD1, ERK1/2, and RSK2 partially colocalized on endosomal structures, suggesting that these proteins are part of the molecular module responsible for BDNF signalling in cortical neurons.}, language = {en} } @article{PfeifferGoetzXiangetal.2013, author = {Pfeiffer, Verena and G{\"o}tz, Rudolf and Xiang, Chaomei and Camarero, Guadelupe and Braun, Attila and Zhang, Yina and Blum, Robert and Heinsen, Helmut and Nieswandt, Bernhard and Rapp, Ulf R.}, title = {Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130304}, pages = {e58259}, year = {2013}, abstract = {This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.}, language = {en} } @article{NieswandtMorowskiBrachsetal.2014, author = {Nieswandt, Bernhard and Morowski, Martina and Brachs, Sebastian and Mielenz, Dirk and D{\"u}tting, Sebastian}, title = {The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice}, doi = {10.1371/journal.pone.0107139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113316}, year = {2014}, abstract = {Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss.}, language = {en} }