@phdthesis{CabelloGonzalez2018, author = {Cabello Gonz{\´a}lez, Victoria}, title = {From behavioral to neurobiological characterization of Rsk2 knockout mice as an animal model for Coffin-Lowry syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171275}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coffin-Lowry syndrome is a rare syndromic form of X-linked mental retardation caused by heterogeneous loss-of-function mutations in the gene RPS6KA3 that encodes the RSK2 protein. Clinical features are delayed motor development, small height, progressive skeletal malformations and mental retardation. Rsk2 deficiency affects behavioral, cellular and molecular functions. To characterize and investigate how this deficiency affects these functions, we made a series of experiments using Rsk2-deficient mice as the animal model for Coffin-Lowry syndrome. We applied a battery of behavioral tests and included the use of the IntelliCage for the first time as a behavioral paradigm to study anxiety-like behavior and depression-like behavior in Rsk2-deficient mice. Results from the conventional behavioral tests and from the IntelliCage indicate that Rsk2-deficient mice may have an anti-anxiety and anti-depressive phenotype. We evaluated in Rsk2 deficient mice the relative gene expression of a set of genes coding for proteins related to RSK2 which are involved in fear memory, synaptic plasticity, neurogenesis, learning, emotional behavior and stress. We found gene expression alterations in the prefrontal cortex and striatum. These results suggest that RSK2 may be involved in the expression of the genes. RSK2 is known to be related to monoamine neurotransmitter function. We measured the levels of dopamine, serotonin and noradrenaline/norepinephrine and their metabolites in different brain regions of Rsk2-deficient mice. We found differences in the dopaminergic and noradrenergic systems suggesting an increased or decreased activity of these neurotransmission systems as a result of Rsk2 deficiency. Adult neurogenesis is a form of neuronal plasticity and a multi-step process of cell development. We explored if this form of neuronal plasticity was affected by Rsk2-deficiency. Our results indicate that adult hippocampal neurogenesis is not influenced by lifelong Rsk2 deficiency. It would be worth to analyze in the future other aspects of neuroplasticity. We have confirmed, that behavioral characteristics of Rsk2-deficient mice make them an interesting model to study the Coffin-Lowry syndrome by extending the behavioral characterization on the emotional level. Furthermore, we have extended the characterization of the model on a molecular level, opening new opportunities to study and understand the pathophysiological basis of the Coffin-Lowry syndrome.}, subject = {Knockout }, language = {en} }