@phdthesis{Iuga2007, author = {Iuga, Maria}, title = {Ab Initio and Finite Element Simulations of Material Properties in Multiphase Ceramics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26246}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In the present study numerical methods are employed within the framework of multiscale modeling. Quantum mechanics and finite element method simulations have been used in order to calculate thermoelastic properties of ceramics. At the atomic scale, elastic constants of ten different ceramics (Al2O3, alpha- and beta-SiC, TiO2-rutile and anatase, AlN, BN, CaF2, TiB2, ZrO2) were calculated from the first principles (ab-initio) using the density functional theory with the general gradient approximation. The simulated elastic moduli were compared with measured values. These results have shown that the ab-initio computations can be used independently from experiment to predict elastic behavior and can provide a basis for the modeling of structural and elastic properties of more complex composite ceramics. In order to simulate macroscopic material properties of composite ceramics from the material properties of the constituting phases, 3D finite element models were used. The influence of microstructural features such as pores and grain boundaries on the effective thermoelastic properties is studied through a diversity of geometries like truncated spheres in cubic and random arrangement, modified Voronoi polyhedra, etc. A 3D model is used for modeling the microstructure of the ceramic samples. The measured parameters, like volume fractions of the two phases, grain size ratios and grain boundary areas are calculated for each structure. The theoretical model is then varied to fit the geometrical data derived from experimental samples. The model considerations are illustrated on two types of bi-continuous materials, a porous ceramic, alumina (Al2O3) and a dense ceramic, zirconia-alumina composite (ZA). For the present study, alumina samples partially sintered at temperatures between 800 and 1320 C, with fractional densities between 58.4\% and 97\% have been used. For ZA ceramic the zirconia powder was partially stabilized and the ratio between alumina and zirconia was varied. For these two examples of ceramics, Young's modulus and thermal conductivity were calculated and compared to experimental data of samples of the respective microstructure. Comparing the experimental and simulated values of Young's modulus for Al2O3 ceramic a good agreement was obtained. For the thermal conductivity the consideration of thermal boundary resistance (TBR) was necessary. It was shown that for different values of TBR the experimental data lie within the simulated thermal conductivities. In the case of ZA ceramic also a good agreement between simulated and experimental values was observed. For smaller ZrO2 fractions, a larger Young's modulus and thermal conductivity was observed in the experimental samples. The discrepancies have been discussed by taking into account the effect of pressure. Considering the dependence of the thermoelastic properties on the pressure, it has been shown that the thermal stresses resulting from the cooling process were insufficient to explain the discrepancies between experimental and simulated thermoelastic properties.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Wurst2015, author = {Wurst, Jan-Eric}, title = {Hp-Finite Elements for PDE-Constrained Optimization}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-024-5 (print)}, doi = {10.25972/WUP-978-3-95826-025-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115027}, school = {W{\"u}rzburg University Press}, pages = {188}, year = {2015}, abstract = {Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) f{\"u}r linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Differentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschr{\"a}nkungen k{\"o}nnen die notwendigen Bedingungen erster Ordnung, die typischerweise f{\"u}r numerische L{\"o}sungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale L{\"o}sungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung ber{\"u}cksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, w{\"a}hrend Elemente h{\"o}herer Ordnung auf Gebieten verwendet werden, auf denen die L{\"o}sung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zun{\"a}chst mit entsprechenden a-priori Verfeinerungsstrategien gel{\"o}st, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um f{\"u}r beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularit{\"a}t von L{\"o}sungen behandelt, weil sie entscheidend f{\"u}r die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade f{\"u}r Elemente verwenden, die den Rand beziehungsweise das Interface ber{\"u}hren, k{\"o}nnen eine neue L2- und L∞-Fehlerabsch{\"a}tzung hergeleitet werden. Letztere bildet die Grundlage f{\"u}r eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu l{\"o}sen. Zudem wird die herk{\"o}mmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die L{\"o}sung von Optimalsteuerungsproblemen {\"u}bertragen (vc-FEM). Es gelingt, Regularit{\"a}t in abz{\"a}hlbar normierten R{\"a}umen f{\"u}r die Variablen des gekoppelten Optimalit{\"a}tssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer v{\"o}llig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung l{\"o}sen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilit{\"a}tssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen {\"u}ber Funktionen mit m{\"o}glichen Singularit{\"a}ten in Elementen h{\"o}herer Ordnung. Dieses Problem wird dadurch gel{\"o}st, dass die Steuerung an den Integrationspunkten {\"u}berwacht wird. Die Zul{\"a}ssigkeit an diesen Punkten wird durch einen Gl{\"a}ttungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Gl{\"a}ttungsschritt als auch a-posteriori Schranken f{\"u}r den Diskretisierungsfehler gezeigt. Dies f{\"u}hrt zu einem adaptiven L{\"o}sungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der L{\"o}sung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeffizienten als Glattheitsindikator und wird f{\"u}r die Entscheidung zwischen h- und p-Verfeinerung herangezogen.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Herrmann2021, author = {Herrmann, Marc}, title = {The Total Variation on Surfaces and of Surfaces}, doi = {10.25972/OPUS-24073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis is concerned with applying the total variation (TV) regularizer to surfaces and different types of shape optimization problems. The resulting problems are challenging since they suffer from the non-differentiability of the TV-seminorm, but unlike most other priors it favors piecewise constant solutions, which results in piecewise flat geometries for shape optimization problems.The first part of this thesis deals with an analogue of the TV image reconstruction approach [Rudin, Osher, Fatemi (Physica D, 1992)] for images on smooth surfaces. A rigorous analytical framework is developed for this model and its Fenchel predual, which is a quadratic optimization problem with pointwise inequality constraints on the surface. A function space interior point method is proposed to solve it. Afterwards, a discrete variant (DTV) based on a nodal quadrature formula is defined for piecewise polynomial, globally discontinuous and continuous finite element functions on triangulated surface meshes. DTV has favorable properties, which include a convenient dual representation. Next, an analogue of the total variation prior for the normal vector field along the boundary of smooth shapes in 3D is introduced. Its analysis is based on a differential geometric setting in which the unit normal vector is viewed as an element of the two-dimensional sphere manifold. Shape calculus is used to characterize the relevant derivatives and an variant of the split Bregman method for manifold valued functions is proposed. This is followed by an extension of the total variation prior for the normal vector field for piecewise flat surfaces and the previous variant of split Bregman method is adapted. Numerical experiments confirm that the new prior favours polyhedral shapes.}, subject = {Gestaltoptimierung}, language = {en} }