@article{AnnunziatavandeVlekkertWolfetal.2019, author = {Annunziata, Ida and van de Vlekkert, Diantha and Wolf, Elmar and Finkelstein, David and Neale, Geoffrey and Machado, Eda and Mosca, Rosario and Campos, Yvan and Tillman, Heather and Roussel, Martine F. and Weesner, Jason Andrew and Fremuth, Leigh Ellen and Qiu, Xiaohui and Han, Min-Joon and Grosveld, Gerard C. and d'Azzo, Alessandra}, title = {MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11568-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221189}, year = {2019}, abstract = {Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.}, language = {en} } @article{BoschertKlenkAbtetal.2020, author = {Boschert, Verena and Klenk, Nicola and Abt, Alexander and Raman, Sudha Janaki and Fischer, Markus and Brands, Roman C. and Seher, Axel and Linz, Christian and M{\"u}ller-Richter, Urs D. A. and Bischler, Thorsten and Hartmann, Stefan}, title = {The influence of Met receptor level on HGF-induced glycolytic reprogramming in head and neck squamous cell carcinoma}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms21020471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235995}, year = {2020}, abstract = {Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Met\(^{high}\)-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC.}, language = {en} } @article{BoschertTeuschMuellerRichteretal.2022, author = {Boschert, Verena and Teusch, Jonas and M{\"u}ller-Richter, Urs D. A. and Brands, Roman C. and Hartmann, Stefan}, title = {PKM2 modulation in head and neck squamous cell carcinoma}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020775}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284458}, year = {2022}, abstract = {The enzyme pyruvate kinase M2 (PKM2) plays a major role in the switch of tumor cells from oxidative phosphorylation to aerobic glycolysis, one of the hallmarks of cancer. Different allosteric inhibitors or activators and several posttranslational modifications regulate its activity. Head and neck squamous cell carcinoma (HNSCC) is a common disease with a high rate of recurrence. To find out more about PKM2 and its modulation in HNSCC, we examined a panel of HNSCC cells using real-time cell metabolic analysis and Western blotting with an emphasis on phosphorylation variant Tyr105 and two reagents known to impair PKM2 activity. Our results show that in HNSCC, PKM2 is commonly phosphorylated at Tyrosine 105. Its levels depended on tyrosine kinase activity, emphasizing the importance of growth factors such as EGF (epidermal growth factor) on HNSCC metabolism. Furthermore, its correlation with the expression of CD44 indicates a role in cancer stemness. Cells generally reacted with higher glycolysis to PKM2 activator DASA-58 and lower glycolysis to PKM2 inhibitor Compound 3k, but some were more susceptible to activation and others to inhibition. Our findings emphasize the need to further investigate the role of PKM2 in HNSCC, as it could aid understanding and treatment of the disease.}, language = {en} } @article{FuhrHeidenreichSrivastavaetal.2022, author = {Fuhr, Viktoria and Heidenreich, Shanice and Srivastava, Mugdha and Riedel, Angela and D{\"u}ll, Johannes and Gerhard-Hartmann, Elena and Rosenwald, Andreas and Rauert-Wunderlich, Hilka}, title = {CD52 and OXPHOS-potential targets in ibrutinib-treated mantle cell lymphoma}, series = {Cell Death Discovery}, volume = {8}, journal = {Cell Death Discovery}, issn = {2058-7716}, doi = {10.1038/s41420-022-01289-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300817}, year = {2022}, abstract = {Altered features of tumor cells acquired across therapy can result in the survival of treatment-resistant clones that may cause minimal residual disease (MRD). Despite the efficacy of ibrutinib in treating relapsed/refractory mantle cell lymphoma, the obstacle of residual cells contributes to relapses of this mature B-cell neoplasm, and the disease remains incurable. RNA-seq analysis of an ibrutinib-sensitive mantle cell lymphoma cell line following ibrutinib incubation of up to 4 d, corroborated our previously postulated resistance mechanism of a metabolic switch to reliance on oxidative phosphorylation (OXPHOS) in surviving cells. Besides, we had shown that treatment-persisting cells were characterized by increased CD52 expression. Therefore, we hypothesized that combining ibrutinib with another agent targeting these potential escape mechanisms could minimize the risk of survival of ibrutinib-resistant cells. Concomitant use of ibrutinib with OXPHOS-inhibitor IACS-010759 increased toxicity compared to ibrutinib alone. Targeting CD52 was even more efficient, as addition of CD52 mAb in combination with human serum following ibrutinib pretreatment led to rapid complement-dependent-cytotoxicity in an ibrutinib-sensitive cell line. In primary mantle cell lymphoma cells, a higher toxic effect with CD52 mAb was obtained, when cells were pretreated with ibrutinib, but only in an ibrutinib-sensitive cohort. Given the challenge of treating multi-resistant mantle cell lymphoma patients, this work highlights the potential use of anti-CD52 therapy as consolidation after ibrutinib treatment in patients who responded to the BTK inhibitor to achieve MRD negativity and prolong progression-free survival.}, language = {en} }