@article{VollmuthMuljukovAbuMugheisibetal.2021, author = {Vollmuth, Christoph and Muljukov, Olga and Abu-Mugheisib, Mazen and Angermeier, Anselm and Barlinn, Jessica and Busetto, Loraine and Grau, Armin J. and G{\"u}nther, Albrecht and Gumbinger, Christoph and Hubert, Nikolai and H{\"u}ttemann, Katrin and Klingner, Carsten and Naumann, Markus and Palm, Frederick and Remi, Jan and R{\"u}cker, Viktoria and Schessl, Joachim and Schlachetzki, Felix and Schuppner, Ramona and Schwab, Stefan and Schwartz, Andreas and Trommer, Adrian and Urbanek, Christian and Volbers, Bastian and Weber, Joachim and Wojciechowski, Claudia and Worthmann, Hans and Zickler, Philipp and Heuschmann, Peter U. and Haeusler, Karl Georg and Hubert, Gordian Jan}, title = {Impact of the coronavirus disease 2019 pandemic on stroke teleconsultations in Germany in the first half of 2020}, series = {European Journal of Neurology}, volume = {28}, journal = {European Journal of Neurology}, number = {10}, doi = {10.1111/ene.14787}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259396}, pages = {3267-3278}, year = {2021}, abstract = {Background and purpose The effects of the coronavirus disease 2019 (COVID-19) pandemic on telemedical care have not been described on a national level. Thus, we investigated the medical stroke treatment situation before, during, and after the first lockdown in Germany. Methods In this nationwide, multicenter study, data from 14 telemedical networks including 31 network centers and 155 spoke hospitals covering large parts of Germany were analyzed regarding patients' characteristics, stroke type/severity, and acute stroke treatment. A survey focusing on potential shortcomings of in-hospital and (telemedical) stroke care during the pandemic was conducted. Results Between January 2018 and June 2020, 67,033 telemedical consultations and 38,895 telemedical stroke consultations were conducted. A significant decline of telemedical (p < 0.001) and telemedical stroke consultations (p < 0.001) during the lockdown in March/April 2020 and a reciprocal increase after relaxation of COVID-19 measures in May/June 2020 were observed. Compared to 2018-2019, neither stroke patients' age (p = 0.38), gender (p = 0.44), nor severity of ischemic stroke (p = 0.32) differed in March/April 2020. Whereas the proportion of ischemic stroke patients for whom endovascular treatment (14.3\% vs. 14.6\%; p = 0.85) was recommended remained stable, there was a nonsignificant trend toward a lower proportion of recommendation of intravenous thrombolysis during the lockdown (19.0\% vs. 22.1\%; p = 0.052). Despite the majority of participating network centers treating patients with COVID-19, there were no relevant shortcomings reported regarding in-hospital stroke treatment or telemedical stroke care. Conclusions Telemedical stroke care in Germany was able to provide full service despite the COVID-19 pandemic, but telemedical consultations declined abruptly during the lockdown period and normalized after relaxation of COVID-19 measures in Germany.}, language = {en} } @article{PillaiHeidemannKumaretal.2011, author = {Pillai, Deepu R. and Heidemann, Robin M. and Kumar, Praveen and Shanbhag, Nagesh and Lanz, Titus and Dittmar, Michael S. and Sandner, Beatrice and Beier, Christoph P. and Weidner, Norbert and Greenlee, Mark W. and Schuierer, Gerhard and Bogdahn, Ulrich and Schlachetzki, Felix}, title = {Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0016091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134193}, pages = {e16091}, year = {2011}, abstract = {Background: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. Methodology and Results: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intracerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. Conclusions: The implemented customizations including extensive sequence protocol modifications resulted in images of high diagnostic quality. These results prove that lack of dedicated animal scanners shouldn't discourage conventional small animal imaging studies.}, language = {en} }