@article{ChenGassnerBoerneretal.2012, author = {Chen, Wen and Gaßner, Birgit and B{\"o}rner, Sebastian and Nikolaev, Viacheslav O. and Schlegel, Nicolas and Waschke, Jens and Steinbronn, Nadine and Strasser, Ruth and Kuhn, Michaela}, title = {Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway}, series = {Cardiovascular Research}, volume = {93}, journal = {Cardiovascular Research}, number = {1}, doi = {10.1093/cvr/cvr279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126562}, pages = {141-151}, year = {2012}, abstract = {Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. Methods and results Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1-/- mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. Conclusion ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.}, language = {en} } @phdthesis{Chen2007, author = {Chen, Wen}, title = {Functional Role of NFATc1 in the Control of Life and Death of Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26675}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In this study, murine ES cells and DT40 B cells were used in parallel to disrupt the Nfatc1 gene and to study the function of individual 6 Nfatc1 isoforms, especially the function of highly inducible NFATc1/aA.We found that the short isoform NFATc1/aA protects DT40 B cells against apoptosis while the long isoform NFATc1/aC appears to enforce apoptosis. DNA microarray studies have shown that in NFATc1" DT40 B cells expressing ectopically human NFATc1/aA, the pkc-theta gene is several fold stronger expressed as in wild type cells. Our results of EMSA (Electrophoretic Mobility Shift Assays) and ChIP (chromatin immuno-precipitation) experiments demonstrated the binding of NFATc1/aA to the pkc-theta promoter in vitro and in vivo. NF-kappa B was also found to bind to the NFATc1 P1-promoter in vitro and in vivo. These data suggest and further prove that NF-kappa B contributes to the induction of the NFATc1 P1 promoter upon activation of T cells. So, NFATc1/aA and NF-kappa B were found to cross-talk in the transcriptional upregulation of their target genes, such as the IL-2 gene and the Nfatc1 gene itself, at multiple steps upon induction of apoptosis. While the pro-apoptotic mechanism of NFATc1s long isoform(s) remains unclear, its corresponding "death partners" are worth further studies. The elucidation of functional roles of NFATc1s short or long isoforms in the control of apoptosis of lymphocytes helps to understand apoptosis regulation, and thereby, the fate of lymphocytes.}, subject = {Lymphozyten}, language = {en} }