@phdthesis{Fischer2023, author = {Fischer, Mathias}, title = {Transient Phenomena and Ionic Kinetics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-32220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322204}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The fact that photovoltaics is a key technology for climate-neutral energy production can be taken as a given. The question to what extent perovskite will be used for photovoltaic technologies has not yet been fully answered. From a photophysical point of view, however, it has the potential to make a useful contribution to the energy sector. However, it remains to be seen whether perovskite-based modules will be able to compete with established technologies in terms of durability and cost efficiency. The additional aspect of ionic migration poses an additional challenge. In the present work, primarily the interaction between ionic redistribution, capacitive properties and recombination dynamics was investigated. This was done using impedance spectroscopy, OCVD and IV characteristics as well as extensive numerical drift-diffusion simulations. The combination of experimental and numerical methods proved to be very fruitful. A suitable model for the description of solar cells with respect to mobile ions was introduced in chapter 4.4. The formal mathematical description of the model was transferred by a non-dimensionalization and suitable numerically solvable form. The implementation took place in the Julia language. By intelligent use of structural properties of the sparse systems of equations, automatic differentiation and the use of efficient integration methods, the simulation tool is not only remarkably fast in finding the solution, but also scales quasi-linearly with the grid resolution. The software package was released under an open source license. In conventional semiconductor diodes, capacitance measurements are often used to determine the space charge density. In the first experimental chapter 5, it is shown that although this is also possible for the ionic migration present in perovskites, it cannot be directly understood as doping related, since the space charge distribution strongly depends on the preconditions and can be manipulated by an externally applied voltage. The exact form of this behavior depends on the perovskite composition. This shows, among other things, that experimental results can only be interpreted within the framework of conventional semiconductors to a very limited extent. Nevertheless, the built-in 99 potential of the solar cell can be determined if the experiments are carried out properly. A statement concerning the type and charge of the mobile ions is not possible without further effort, while their number can be determined. The simulations were applied to experimental data in chapter 6. Thus, it could be shown that mobile ions make a significant contribution to the OCVD of perovskite solar cells. j-V characteristics and OCVD transients measured as a function of temperature and illumination intensities could be quantitatively modeled simultaneously using a single global set of parameters. By the simulations it was further possible to derive a simple experimental procedure to determine the concentration and the diffusivity of the mobile ions. The possibility of describing different experiments in a uniform temperaturedependent manner strongly supports the model of mobile ions in perovskites. In summary, this work has made an important contribution to the elucidation of ionic contributions to the (photo)electrical properties of perovskite solar cells. Established experimental techniques for conventional semiconductors have been reinterpreted with respect to ionic mass transport and new methods have been proposed to draw conclusions on the properties for ionic transport. As a result, the published simulation tools can be used for a number of further studies.}, subject = {Simulation}, language = {en} } @techreport{SertbasBuelbuelErgencFischer2022, type = {Working Paper}, author = {Sertbas B{\"u}lb{\"u}l, Nurefsan and Ergenc, Doganalp and Fischer, Mathias}, title = {Evaluating Dynamic Path Reconfiguration for Time Sensitive Networks}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280743}, pages = {5}, year = {2022}, abstract = {In time-sensitive networks (TSN) based on 802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise transmission schedules and, paths are used to ensure end-to-end deterministic communication. Such resource reservations for data flows are usually established at the startup time of an application and remain untouched until the flow ends. There is no way to migrate existing flows easily to alternative paths without inducing additional delay or wasting resources. Therefore, some of the new flows cannot be embedded due to capacity limitations on certain links which leads to sub-optimal flow assignment. As future networks will need to support a large number of lowlatency flows, accommodating new flows at runtime and adapting existing flows accordingly becomes a challenging problem. In this extended abstract we summarize a previously published paper of us [1]. We combine software-defined networking (SDN), which provides better control of network flows, with TSN to be able to seamlessly migrate time-sensitive flows. For that, we formulate an optimization problem and propose different dynamic path configuration strategies under deterministic communication requirements. Our simulation results indicate that regularly reconfiguring the flow assignments can improve the latency of time-sensitive flows and can increase the number of flows embedded in the network around 4\% in worst-case scenarios while still satisfying individual flow deadlines.}, subject = {Datennetz}, language = {en} } @article{KiermaschFischerGilEscrigetal.2021, author = {Kiermasch, David and Fischer, Mathias and Gil-Escrig, Lid{\´o}n and Baumann, Andreas and Bolink, Henk J. and Dyakonov, Vladimir and Tvingstedt, Kristofer}, title = {Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {11}, doi = {10.1002/solr.202100400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258003}, year = {2021}, abstract = {The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley-Read-Hall recombination rates.}, language = {en} }