@article{SchuchForstnerRappetal.2021, author = {Schuch, Luise A. and Forstner, Maria and Rapp, Christina K. and Li, Yang and Smith, Desiree E. C. and Mendes, Marisa I. and Delhommel, Florent and Sattler, Michael and Emiralioğlu, Nagehan and Taskiran, Ekim Z. and Orhan, Diclehan and Kiper, Nural and Rohlfs, Meino and Jeske, Tim and Hastreiter, Maximilian and Gerstlauer, Michael and Torrent-Vernetta, Alba and Moreno-Gald{\´o}, Antonio and Kammer, Birgit and Brasch, Frank and Reu-Hofer, Simone and Griese, Matthias}, title = {FARS1-related disorders caused by bi-allelic mutations in cytosolic phenylalanyl-tRNA synthetase genes: Look beyond the lungs!}, series = {Clinical Genetics}, volume = {99}, journal = {Clinical Genetics}, number = {6}, doi = {10.1111/cge.13943}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238827}, pages = {789 -- 801}, year = {2021}, abstract = {Aminoacyl-tRNA synthetases (ARSs) catalyze the first step of protein biosynthesis (canonical function) and have additional (non-canonical) functions outside of translation. Bi-allelic pathogenic variants in genes encoding ARSs are associated with various recessive mitochondrial and multisystem disorders. We describe here a multisystem clinical phenotype based on bi-allelic mutations in the two genes (FARSA, FARSB) encoding distinct subunits for tetrameric cytosolic phenylalanyl-tRNA synthetase (FARS1). Interstitial lung disease with cholesterol pneumonitis on histology emerged as an early characteristic feature and significantly determined disease burden. Additional clinical characteristics of the patients included neurological findings, liver dysfunction, and connective tissue, muscular and vascular abnormalities. Structural modeling of newly identified missense mutations in the alpha subunit of FARS1, FARSA, showed exclusive mapping to the enzyme's conserved catalytic domain. Patient-derived mutant cells displayed compromised aminoacylation activity in two cases, while remaining unaffected in another. Collectively, these findings expand current knowledge about the human ARS disease spectrum and support a loss of canonical and non-canonical function in FARS1-associated recessive disease.}, language = {en} } @article{SanchezMaldonadoMonizDiezterHorstetal.2020, author = {S{\´a}nchez-Maldonado, Jose Manuel and Mo{\~n}iz-D{\´i}ez, Ana and ter Horst, Rob and Campa, Daniele and Cabrera-Serrano, Antonio Jos{\´e} and Mart{\´i}nez-Bueno, Manuel and Garrido-Collado, Mar{\´i}a del Pilar and Hern{\´a}ndez-Mohedo, Francisca and Fern{\´a}ndez-Puerta, Laura and L{\´o}pez-Nevot, Miguel {\´A}ngel and Cunha, Cristina and Gonz{\´a}lez-Sierra, Pedro Antonio and Springer, Jan and Lackner, Michaela and Alcazar-Fuoli, Laura and Fianchi, Luana and Aguado, Jos{\´e} Mar{\´i}a and Pagano, Livio and L{\´o}pez-Fern{\´a}ndez, Elisa and Clavero, Esther and Potenza, Leonardo and Luppi, Mario and Moratalla, Lucia and Solano, Carlos and Sampedro, Antonio and Cuenca-Estrella, Manuel and Lass-Fl{\"o}rl, Cornelia and Canzian, Federico and Loeffler, Juergen and Li, Yang and Einsele, Hermann and Netea, Mihai G. and V{\´a}zquez, Lourdes and Carvalho, Agostinho and Jurado, Manuel and Sainz, Juan}, title = {Polymorphisms within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis: a two-stage case control study in the context of the aspBIOmics consortium}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {1}, issn = {2309-608X}, doi = {10.3390/jof7010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220107}, year = {2020}, abstract = {Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4\(_{rs7526628T/T}\) genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4\(_{rs7526628T}\) allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2\(_{rs12137965G}\) allele increased the risk of IA by 60\% (p = 0.0017), whereas each copy of the MAPKAPK2\(_{rs17013271T}\) allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2\(_{rs12137965G}\) allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2\(_{rs17013271T}\) allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.}, language = {en} }