@techreport{RaffeckGeisslerHossfeld2023, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Towards Understanding the Signaling Traffic in 5G Core Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322106}, pages = {4}, year = {2023}, abstract = {The Fifth Generation (5G) communication technology, its infrastructure and architecture, though already deployed in campus and small scale networks, is still undergoing continuous changes and research. Especially, in the light of future large scale deployments and industrial use cases, a detailed analysis of the performance and utilization with regard to latency and service times constraints is crucial. To this end, a fine granular investigation of the Network Function (NF) based core system and the duration for all the tasks performed by these services is necessary. This work presents the first steps towards analyzing the signaling traffic in 5G core networks, and introduces a tool to automatically extract sequence diagrams and service times for NF tasks from traffic traces.}, language = {en} } @techreport{LohRaffeckGeissleretal.2023, type = {Working Paper}, author = {Loh, Frank and Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Paving the Way for an Energy Efficient and Sustainable Future Internet of Things}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322161}, pages = {4}, year = {2023}, abstract = {In this work, we describe the network from data collection to data processing and storage as a system based on different layers. We outline the different layers and highlight major tasks and dependencies with regard to energy consumption and energy efficiency. With this view, we can outwork challenges and questions a future system architect must answer to provide a more sustainable, green, resource friendly, and energy efficient application or system. Therefore, all system layers must be considered individually but also altogether for future IoT solutions. This requires, in particular, novel sustainability metrics in addition to current Quality of Service and Quality of Experience metrics to provide a high power, user satisfying, and sustainable network.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} }