@phdthesis{Hennlein2023, author = {Hennlein, Luisa}, title = {Plastin 3 rescues defective cell surface translocation and activation of TrkB in mouse models for spinal muscular atrophy}, publisher = {Journal of Cell Biology}, doi = {10.25972/OPUS-29879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Spinal muscular atrophy (SMA) is a genetic pediatric condition that affects lower motoneurons leading to their degeneration and muscle weakness. It is caused by homozygous loss or mutations in the Survival Motor Neuron 1 (SMN1) gene; however, the pathomechanism leading to motoneuron degeneration is not fully resolved. Cultured embryonic SMA motoneurons display axon elongation and differentiation defects accompanied by collapsed growth cones with a disturbed actin cytoskeleton. Intriguingly, motoneurons cultured from mice deficient for the Tropomyosin-kinase receptor B (TrkB), exhibit similar pathological features. Thus, the question arises whether SMA motoneurons suffer from defective Brain-derived neurotrophic factor (BDNF)/TrkB signaling and whether there is a link to the disturbed actin cytoskeleton. In the recent years, modifier genes such as Plastin 3 (PLS3) were shown to beneficially interfere with SMA pathology. Nevertheless, the mechanism of how the actin-bundler PLS3 counteracts SMN deficiency is not well understood. In this study, we investigated TrkB localization and its activation in cultured SMA motoneurons and neuromuscular junctions (NMJs). While TrkB levels are only mildly affected locally in axon terminals, BDNF-mediated TrkB phosphorylation was massively disturbed. The activity-dependent TrkB translocation to the cell surface and its activation via BDNF were shown to be Pls3-dependent processes, that can be abolished by knockdown of Pls3. In contrast, PLS3 overexpression in SMA motoneurons rescued the defects on morphological and functional level. In particular, the relocation of TrkB to the cell surface after BDNF-induced internalization is disturbed in SMA, which is based on an actin-dependent TrkB translocation defect from intracellular stores. Lastly, AAV9-mediated PLS3 overexpression in vivo in neonatal SMA mice provided further evidence for the capacity of PLS3 to modulate actin dynamics necessary for accurate BDNF/TrkB signaling. In conclusion, we provide a novel role for PLS3 in mediating proper alignment of transmembrane proteins as prerequisite for their appropriate functioning. Hence, PLS3 is required for a key process indispensable for the development and function of motoneurons even beyond the context of SMA.}, subject = {Spinale Muskelatrophie}, language = {en} } @phdthesis{Deng2023, author = {Deng, Chunchu}, title = {Dynamic remodeling of endoplasmic reticulum and ribosomes in axon terminals of wildtype and Spinal Muscular Atrophy motoneurons}, doi = {10.25972/OPUS-26495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264954}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA.}, subject = {Motoneuron}, language = {en} } @phdthesis{Andreska2021, author = {Andreska, Thomas}, title = {Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses}, doi = {10.25972/OPUS-17431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply.}, subject = {Brain-derived neurotrophic factor}, language = {en} } @phdthesis{Asthana2013, author = {Asthana, Manish}, title = {Associative learning - Genetic modulation of extinction and reconsolidation and the effects of transcranial Direct Current Stimulation (tDCS)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Scientific surveys provide sufficient evidence that anxiety disorders are one of the most common psy-chiatric disorders in the world. The lifetime prevalence rate of anxiety disorder is 28.8\% (Kessler, et al., 2005). The most widely studied anxiety disorders are as follows panic disorder (PD), post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), social phobia (or social anxiety disorder), specific phobias, and generalized anxiety disorder (GAD). (NIMH Article, 2009). Classical conditioning is the stable paradigm used from the last one century to understand the neurobi-ology of fear learning. Neurobiological mechanism of fear learning is well documented with the condi-tioning studies. In the therapy of anxiety disorders, exposure based therapies are known to be the most effective approaches. Flooding is a form of exposure therapy in which a participant is exposed to the fear situation and kept in that situation until their fear dissipates. The exposure therapy is based on the phenomena of extinction; this means that a conditioned response diminishes if the conditioned stimulus (CS) is repeatedly presented without an unconditioned stimulus (UCS). One problem with extinction as well as with exposure-based therapy is the problem of fear return (for e.g. renewal, spontaneous recov-ery and reinstatement) after successful extinction. Therefore, extinction does not delete the fear memory trace. It has been well documented that memory processes can be modulated or disrupted using several sci-entific paradigms such as behavioral (for e.g. exposure therapy), pharmacological (for e.g. drug manipu-lation), non-invasive stimulation (for e.g. non-invasive stimulation such as electroconvulsive shock (ECS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), etc. However, modulation of memory processes after reactivation or via non-invasive stimulation is still not clear, which is the focus of the current study. In addition, study of genetic variant suggests that genetic differences play a vital role in the psychiatric disorder especially in fear learning. Hence, it is also one of the concerns of the current dissertation to investigate the interaction between gene and reconsolidation of memory. With respect to fear-conditioning, there are three findings in the current dissertation, which are as fol-lows: (i) In the first study we investigated that non-invasive weak electrical stimulation interferes with the consolidation process and disrupts the fear consolidation to attain stable form. This might offer an effective treatment in the pathological memories, for e.g. PTSD, PD, etc. (ii) In the second study we demonstrated whether a brief single presentation of the CS will inhibit the fear recovery. Like earlier studies we also found that reactivation followed by reconsolidation douses fear return. Attenuation of fear recovery was observed in the reminder group compared to the no-reminder group. (iii) Finally, in our third study we found a statistically significant role of brain derived neurotrophic factor (BDNF) polymorphism in reconsolidation. Results of the third study affirm the involvement of BDNF variants (Met vs. Val) in the modulation of conditioned fear memory after its reactivation. In summary, we were able to show in the current thesis modulation of associative learning and recon-solidation via transcranial direct current stimulation and genetic polymorphism.}, subject = {Konditionierung}, language = {en} } @article{GoetzRaulfSchartl1992, author = {G{\"o}tz, Rudolf and Raulf, Friedrich and Schartl, Manfrad}, title = {Brain-derived neurotrophic factor is more highly conserved in structure and function than nerve growth factor during vertebrate evolution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61703}, year = {1992}, abstract = {Mammalian nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are members of a protein family with perfectly conserved domains arranged around the cysteine residues thought to stabilize an invariant three-dimensional scaffold in addition to distinct sequence motifs that convey different neuronal functions. To study their structural and functional conservation during evolution, we have compared NGF and BDNF from a lower vertebrate, the teleost fi.sh Xiphophorus, with the mammalian homlogues. Genomic clones encoding fish NGF and BDNF were isolated by cross-hybridization using probes from the cloned mammalian factors. Fish NGF and BDNF were expressed by means of recombinant vaccinia viruses, purified, and their neuronal survival specificities for different classes of neurons were found to mirror those of the mammalian factors. The half-maximal survival concentration for chick sensory neurons was 60 pg/ml for both fish and mammalian purifi.ed recombinant BDNF. However, the activity ofrecombinant fish NGF on both chick sensory and sympathetic neurons was 6 ng,lml, 75-fold lower than that of mouse NGF. The different functional conservation of NGF and BDNF is also reflected in their structures. The DNA-deduced amino acid sequences of processed mature fish NGF and BDNF showed, compared to mouse, 63\% and 90\% identity, respectively, indicating that NGF bad reached an optimized structure later than BDNF. The retrograde extrapolation of these data indicates that NGF and BDNF evolved at strikingly different rates ftom a common ancestral gene about 600 million years ago. By RNA gel blot anaJysis NGF mRNA was detected during late embryonie development; BDNF was present in adult brain.}, subject = {Physiologische Chemie}, language = {en} }