@phdthesis{Isasa2024, author = {Isasa, Emilie}, title = {Relationship between wood properties, drought-induced embolism and environmental preferences across temperate diffuse-porous broadleaved trees}, doi = {10.25972/OPUS-30356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In the scope of climate warming and the increase in frequency and intensity of severe heat waves in Central Europe, identification of temperate tree species that are suited to cope with these environmental changes is gaining increasing importance. A number of tree physiological characteristics are associated with drought-stress resistance and survival following severe heat, but recent studies have shown the importance of plant hydraulic and anatomical traits for predicting drought-induced tree mortality, such as vessel diameter, and their potential to predict species distribution in a changing climate. A compilation of large global datasets is required to determine traits related to drought-induced embolism and test whether embolism resistance can be determined solely by anatomical traits. However, most measurements of plant hydraulic traits are labour-intense and prone to measurement artefacts. A fast, accurate and widely applicable technique is necessary for estimating xylem embolism resistance (e.g., water potential at 50\% loss of conductivity, P50), in order to improve forecasts of future forest changes. These traits and their combination must have evolved following the selective pressure of the environmental conditions in which each species occurs. Describing these environmental-trait relationships can be useful to assess potential responses to environmental change and mitigation strategies for tree species, as future warmer temperatures may be compounded by drier conditions.}, subject = {Pflanzen{\"o}kologie}, language = {en} } @phdthesis{Mayr2021, author = {Mayr, Antonia Veronika}, title = {Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species}, doi = {10.25972/OPUS-18292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 - General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are considered to be important factors in determining insect diversity. Yet, the relative importance of each of these factors is unknown. Using trap nests along the elevational gradient of Mt. Kilimanjaro, we tried to disentangle drivers of species richness at different trophic levels. Temperature was the major driver of species richness across trophic levels, with increasing importance of food resources at higher trophic levels in natural antagonists. Parasitism rate was both related to temperature and trophic level, indicating that the relative importance of bottom-up and top-down forces might shift with climate change. Chapter 3 - Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera Natural populations fluctuate with the availability of resources, presence of natural enemies and climatic variations. But tropical mountain seasonality is not yet well investigated. We investigated seasonal patterns in nest-building activity, functional traits and ecological rates in three different insect groups at lower and higher elevations separately. Insects were caught with trap nests which were checked monthly during a 17 months period that included three dry and three rainy seasons. Insects were grouped according to their functional guilds. All groups showed strong seasonality in nest-building activity which was higher and more synchronised among groups at lower elevations. Seasonality in nest building activity of caterpillar-hunting and spider-hunting wasps was linked to climate seasonality while in bees it was strongly linked to the availability of flowers, as well as for the survival rate and sex ratio of bees. Finding adaptations to environmental seasonality might imply that further changes in climatic seasonality by climate change could have an influence on life-history traits of tropical mountain species. Chapter 4 - Cryptic species and hidden ecological interactions of halictine bees along an elevational Gradient Strong environmental gradients such as those occurring along mountain slopes are challenging for species. In this context, hidden adaptations or interactions have rarely been considered. We used bees of the genus Lasioglossum as model organisms because Lasioglossum is the only bee genus occurring with a distribution across the entire elevational gradient at Mt. Kilimanjaro. We asked if and how (a) cuticular hydrocarbons (CHC), which act as a desiccation barrier, change in composition and chain length along with changes in temperature and humidity (b), Lasioglossum bees change their pollen diet with changing resource availability, (c) gut microbiota change with pollen diet and climatic conditions, and surface microbiota change with CHC and climatic conditions, respectively, and if changes are rather influenced by turnover in Lasioglossum species along the elevational gradient. We found physiological adaptations with climate in CHC as well as changes in communities with regard to pollen diet and microbiota, which also correlated with each other. These results suggest that complex interactions and feedbacks among abiotic and biotic conditions determine the species composition in a community. Chapter 5 - General Discussion Abiotic and biotic factors drove species diversity, traits and interactions and they worked differently depending on the functional group that has been studied, and whether spatial or temporal units were considered. It is therefore likely, that in the light of global change, different species, traits and interactions will be affected differently. Furthermore, increasing land use intensity could have additional or interacting effects with climate change on biodiversity, even though the potential land-use effects at Mt. Kilimanjaro are still low and not impairing cavity-nesting Hymenoptera so far. Further studies should address species networks which might reveal more sensitive changes. For that purpose, trap nests provide a good model system to investigate effects of global change on multiple trophic levels and may also reveal direct effects of climate change on entire life-history traits when established under different microclimatic conditions. The non-uniform effects of abiotic and biotic conditions on multiple aspects of biodiversity revealed with this study also highlight that evaluating different aspects of biodiversity can give a more comprehensive picture than single observations.}, subject = {land use}, language = {en} } @phdthesis{Lama2016, author = {Lama, Anu Kumari}, title = {Understanding Institutional Adaptation to Climate Change: Social Resilience and Adaptive Governance Capacities of the Nature Based Tourism Institutions in the Annapurna Conservation Area, Nepal}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-034-4 (print)}, issn = {0510-9833 (print)}, doi = {10.25972/WUP-978-3-95826-035-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131351}, school = {W{\"u}rzburg University Press}, pages = {208}, year = {2016}, abstract = {The global-local sustainable development and climate change adaptation policy, and the emerging political discourse on the value of local Adaptation, have positioned the local institutions and their governance space within the strategic enclaves of multilevel governance system. Such shifts have transformed the context for sustainable Nature Based Tourism (NBT) development and adaptation in Nepal in general, and its protected areas, in particular. The emerging institutional adaptation discourse suggests on the need to link tourism development, adaptation and governance within the sustainability concept, and also to recognize the justice and inclusive dimensions of local adaptation. However, sociological investigation of institutional adaptation, particularly at the interface between sustainability, justice and inclusive local adaptation is an undertheorized research topic. This exploratory study examined the sociological process of the institutional adaptation, especially the social resilience and adaptive governance capacities of the NBT institutions, in 7 Village Development Committees of the Mustang district, a popular destination in the Annapurna Conservation Area, Nepal. Using the sphere (a dynamic social space concept) and quality of governance as the analytical framework, the integrative adaptation as the methodological approach and the case study action research method, the study investigated and generated a holistic picture on the state of the social resilience and adaptive governance capacities of the NBT institutions. The findings show institutional social resilience capacities to be contingent on socio-political construction of adaptation knowledge and power. Factors influencing such constructions among NBT institutions include: the site and institutions specific political, economic and environmental dispositions; the associated socio-political processes of knowledge constructions and volition action; and the social relationships and interaction, operating within the spheres and at multiple governance levels. The adaptive governance capacities hinge on the institutional arrangements, the procedural aspects of adaptation governance and the governmentality. These are reflective of the diverse legal frameworks, the interiority perspective of the decision making and governance practices of the NBT institutions. In conclusion, it is argued that effective local adaptation in the Mustang district is contingent on the adaptation and institutional dynamics of the NBT institutions, consisting of the cognitive, subjective, process and procedural aspects of the adaptation knowledge production and its use.}, subject = {Annapurna Conservation Area}, language = {en} } @phdthesis{Awoye2015, author = {Awoye, Oy{\´e}monbad{\´e} Herv{\´e} Rodrigue}, title = {Implications of future climate change on agricultural production in tropical West Africa: evidence from the Republic of Benin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world - tropical West Africa included - are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies. Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants). In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90). Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5\% for both maize and groundnuts, and -11\%, -29\%, -33\% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10\% for sorghum and yams, +24\% for cotton, and +39\% for rice are expected. Over the time period 2001 - 2050, on average the future yield changes range between -3\% and -13\% under REMO SRES-B1 (GHG)+LCC, -2\% and -11\% under REMO SRES-A1B (GHG only),and -3\% and -14\% under REMO SRES-A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2\% to +7\% under REMO SRES-B1 (GHG)+LCC, +0.1\% and +12\% under REMO SRES-A1B (GHG only), and +3\% and +10\% under REMO SRES-A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects. Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture.}, subject = {Benin}, language = {en} } @phdthesis{Hoiss2013, author = {Hoiß, Bernhard}, title = {Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed.}, subject = {Klima{\"a}nderung}, language = {en} } @phdthesis{Leingaertner2013, author = {Leing{\"a}rtner, Annette}, title = {Combined effects of climate change and extreme events on plants, arthropods and their interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed.}, subject = {Insekten}, language = {en} } @phdthesis{Duenkeloh2011, author = {D{\"u}nkeloh, Armin}, title = {Water Balance Dynamics of Cyprus - Actual State and Impacts of Climate Change}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {A completely revised and enhanced version of the water balance model MODBIL of the regional water balance dynamics of Cyprus was developed for this study. The model is based on a physical, process-oriented, spatially distributed concept and is applied for the calculation of all important water balance components of the island for the time period of 1961-2004. The calibrated results are statistically analysed and visualised for the whole island area, and evaluated with respect to the renewability of natural water resources. Climate variability and changes of the past decades are analysed with regard to their influence on water balances. A further part of the study focusses on the simulation of impacts of potential climate change. The water balances are simulated under changing climatic conditions on the base of theoretical precipitation, temperature and relative humidity changes and the revealed impacts on the water balances and renewable resources are discussed. Furthermore, a first principal water balance scenario is developed for the assessment of the regional hydrological changes expected for Cyprus by the end of the 21st century. The scenarios are based on recently calculated climate change assessments for this part of the Mediterranean, under an assumed further increase of greenhouse gasses in the atmosphere.}, subject = {Wasserhaushalt}, language = {en} }