@phdthesis{Stiller2023, author = {Stiller, Carina}, title = {Synthesis and applications of modified nucleosides and RNA nucleotides}, doi = {10.25972/OPUS-31135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the 'central dogma of life'. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Scheitl2023, author = {Scheitl, Carolin P. M.}, title = {In vitro selected ribozymes for RNA methylation and labeling}, doi = {10.25972/OPUS-33004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this work was the development and application of highly efficient RNA catalysts for the site-specific modification of RNA with special focus on methylation. In the course of this thesis, the first methyltransferase ribozyme (MTR1), which uses m6G as the methyl group donor was developed and further characterized. The RNA product was identified as the natural modification m1A. X-Ray crystallography was used to solve the 3D structure of the ribozyme, which directly suggested a plausible reaction meachnism. The MTR1 ribozyme was also successfully repurposed for a nucleobase transformation reaction of a purine nucleoside. This resulted in a formyl-imidazole moiety directly on the intact RNA, which was directly used for further bioconjugation reactions. Finally, additional selections and reselections led to the identification of highly active alkyltransferase ribozymes that can be used for the labeling of various RNA targets}, subject = {Methylierung}, language = {en} } @phdthesis{Ehebauer2020, author = {Ehebauer, Franziska}, title = {Regulation of Nicotinamide N-methyltransferase Expression in Adipocytes}, doi = {10.25972/OPUS-21764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nicotinamide N-methyltransferase (NNMT) is a new regulator of energy homeostasis. Its expression is increased in models of obesity and diabetes. An enhanced NNMT level is also caused by an adipose tissue-specific knockout of glucose transporter type 4 (GLUT4) in mice, whereas the overexpression of this glucose transporter reduced the NNMT expression. Furthermore, the knockdown of the enzyme prevents mice from diet-induced obesity (DIO) and the recently developed small molecule inhibitors for NNMT reverses the DIO. These previous findings demonstrated the exclusive role of NNMT in adipose tissue and further make it to a promising target in obesity treatment. However, the regulation mechanism of this methyltransferase is not yet clarified. The first part of the thesis focus on the investigation whether pro-inflammatory signals are responsible for the enhanced NNMT expression in obese adipose tissue because a hallmark of this tissue is a low-level chronic inflammation. Indeed, the NNMT mRNA in our study was elevated in obese patients compared with the control group, whereas the GLUT4 mRNA expression does not differ between lean and obese humans. To analyze whether pro inflammatory signals, like interleukin (IL 6) and tumor necrosis factor α (TNF-α), regulate NNMT expression 3T3-L1 adipocytes were treated with these cytokines. However, IL 6, TNF α, and leptin, which is an alternative activator of the JAK/STAT pathway, did not affect the NNMT protein or mRNA level in differentiated 3T3-L1 adipocytes. The mRNA and protein levels were measured by quantitative polymerase chain reaction (qPCR) and western blotting. In the second part of this study, 3T3-L1 adipocytes were cultivated with varying glucose concentrations to show whether NNMT expression depends on glucose availability. Further studies with activators and inhibitors of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) signaling pathways were used to elucidate the regulation mechanism of the enzyme. The glucose deprivation of differentiated 3T3-L1 adipocytes led to a 2-fold increase in NNMT expression. This effect was confirmed by the inhibition of the glucose transports with phloretin as well as the inhibition of glycolysis with 2-deoxyglucose (2-DG). AMPK serves as an intracellular energy sensor and the pharmacological activation of it enhanced the NNMT expression. This increase was also caused by the inhibition of mTOR. Conversely, the activation of mTOR using MHY1485 prevented the effect of glucose deprivation on NNMT. Furthermore, the NNMT up-regulation was also blocked by the different autophagy inhibitors. Taken together, NNMT plays a critical role in autophagy in adipocytes, because an inhibition of this process prevented the augmented NNMT expression during glucose starvation. Moreover, the effect on NNMT protein and mRNA level depends on AMPK and mTOR. However, pro-inflammatory signals did not affect the expression. Further in vivo studies have to clarify whether AMPK activation and mTOR inhibition as well as autophagy are responsible for the increased NNMT levels in obese adipose tissue. In future this methyltransferase emerges as an awesome therapeutic target for obesity.}, subject = {Fettzelle}, language = {en} }