@article{HolzerAlmanzarWoidichetal.2022, author = {Holzer, Marie-Therese and Almanzar, Giovanni and Woidich, Robert and H{\"u}gle, Boris and Haas, Johannes-Peter and Prelog, Martina}, title = {Mitigated suppressive function of regulatory T cells (Treg) upon Th17-inducing cytokines in oligo- and polyarticular Juvenile Idiopathic Arthritis (JIA) patients}, series = {Pediatric Rheumatology}, volume = {20}, journal = {Pediatric Rheumatology}, number = {1}, doi = {10.1186/s12969-022-00680-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300453}, year = {2022}, abstract = {Background The plasticity of T helper-17 (Th17) and regulatory T (Treg) cells may be a clue to pathogenesis of Juvenile Idiopathic Arthritis (JIA). It is still unclear, whether targeted suppression of Interleukin (IL)-17 is able to influence regulatory function of Treg to control pro-inflammatory effectors in JIA. This study aimed to assess the effect of a Th17-stimulating cytokine environment and of IL-17A-inhibition on phenotype plasticity and suppressive function of Treg derived from JIA patients. Methods Th17 and Treg characteristics of CD4\(^{+}\) helper T cells were investigated in blood samples of JIA patients with oligo- and polyarticular pattern and healthy controls (HC). Isolated CD4\(^{+}\)CD25\(^{+}\)CD127\(^{-}\) cells defined as Treg were cultivated with Th17-inducing cytokine environment as well as with IL-17A-inhibitors and analyzed for plasticity of phenotype by flow cytometry. Furthermore, inhibitory function of Treg on autologous effectors after cultivation with these stimuli was determined by suppression assays. Results Our findings demonstrated significantly elevated proportions of Th17 and Th17-like Treg in JIA compared to HC. After incubation with Th17-inducing stimuli, increased FoxP3 expression in separated Treg in JIA and an impaired suppressive capacity in JIA and HC were found. Blockade of IL-17A resulted in adjustment of FoxP3-expression in JIA to proportions found in controls and in regular suppressive function. Conclusions Our results demonstrate an induction of FoxP3 expressing Treg by Th17-inducing cytokines with concomitant mitigated suppressive function. In contrast, specific IL-17A blockade maintains suppressive Treg function and adjusted FoxP3-expression in JIA to levels found in controls. These findings may help to provide experimental evidence for the successful clinical use of IL-17A inhibition in JIA patients.}, language = {en} } @article{HeimAlmanzarSchmalzingetal.2021, author = {Heim, Jana and Almanzar, Giovanni and Schmalzing, Marc and Gernert, Michael and Tony, Hans-Peter and Prelog, Martina}, title = {Induction of IL-9 in Peripheral Lymphocytes of Rheumatoid Arthritis Patients and Healthy Donors by Th17-Inducing Cytokine Conditions}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.668095}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237838}, year = {2021}, abstract = {IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.}, language = {en} } @article{AlmanzarKleinSchmalzingetal.2016, author = {Almanzar, Giovanni and Klein, Matthias and Schmalzing, Marc and Hilligardt, Deborah and El Hajj, Nady and Kneitz, Hermann and Wild, Vanessa and Rosenwald, Andreas and Benoit, Sandrine and Hamm, Henning and Tony, Hans-Peter and Haaf, Thomas and Goebeler, Matthias and Prelog, Martina}, title = {Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis}, series = {International Archives of Allergy and Immunology}, volume = {171}, journal = {International Archives of Allergy and Immunology}, number = {2}, issn = {1018-2438}, doi = {10.1159/000450949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196577}, pages = {141-154}, year = {2016}, abstract = {Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype.}, language = {en} } @article{KollgaardUgurelBeckerIdornetal.2015, author = {K{\o}llgaard, Tania and Ugurel-Becker, Selma and Idorn, Manja and Andersen, Mads Hald and Becker, J{\"u}rgen C. and Straten, Per thor}, title = {Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0131934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151509}, pages = {e0131934}, year = {2015}, abstract = {Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses as well as clinical outcome in metastatic melanoma patients vaccinated with survivin-derived peptides. Notably, we observed dysfunctional Th1 and cytotoxic T cells, i.e. down-regulation of the CD3\(\zeta\)chain (p=0.001) and an impaired IFN\(\gamma\)-production (p=0.001) in patients compared to healthy donors, suggesting an altered activity of immune regulatory cells. Moreover, the frequencies of Th17 cells (p=0.03) and Tregs (p=0.02) were elevated as compared to healthy donors. IL-17-secreting CD4\(^{+}\) T cells displayed an impact on the immunological and clinical effects of vaccination: Patients characterized by high frequencies of Th17 cells at pre-vaccination were more likely to develop survivin-specific T-cell reactivity post-vaccination (p=0.03). Furthermore, the frequency of Th17 (p=0.09) and Th17/IFN\(\gamma\)\(^{+}\) (p=0.19) cells associated with patient survival after vaccination. In summary, our explorative, hypothesis-generating study demonstrated that immune regulatory cells, in particular Th17 cells, play a relevant role for generation of the vaccine-induced anti-tumor immunity in cancer patients, hence warranting further investigation to test for validity as predictive biomarkers.}, language = {en} }