@phdthesis{Wilde2022, author = {Wilde, Martina}, title = {Landslide susceptibility assessment in the Chiconquiaco Mountain Range area, Veracruz (Mexico)}, doi = {10.25972/OPUS-27608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In Mexico, numerous landslides occur each year and Veracruz represents the state with the third highest number of events. Especially the Chiconquiaco Mountain Range, located in the central part of Veracruz, is highly affected by landslides and no detailed information on the spatial distribution of existing landslides or future occurrences is available. This leaves the local population exposed to an unknown threat and unable to react appropriately to this hazard or to consider the potential landslide occurrence in future planning processes. Thus, the overall objective of the present study is to provide a comprehensive assessment of the landslide situation in the Chiconquiaco Mountain Range area. Here, the combination of a site-specific and a regional approach enables to investigate the causes, triggers, and process types as well as to model the landslide susceptibility for the entire study area. For the site-specific approach, the focus lies on characterizing the Capul{\´i}n landslide, which represents one of the largest mass movements in the area. In this context, the task is to develop a multi-methodological concept, which concentrates on cost-effective, flexible and non-invasive methods. This approach shows that the applied methods complement each other very well and their combination allows for a detailed characterization of the landslide. The analyses revealed that the Capul{\´i}n landslide is a complex mass movement type. It comprises rotational movement in the upper parts and translational movement in the lower areas, as well as flow processes at the flank and foot area and therefore, is classified as a compound slide-flow according to Cruden and Varnes (1996). Furthermore, the investigations show that the Capul{\´i}n landslide represents a reactivation of a former process. This is an important new information, especially with regard to the other landslides identified in the study area. Both the road reconstructed after the landslide, which runs through the landslide mass, and the stream causing erosion processes at the foot of the landslide severely affect the stability of the landslide, making it highly susceptible to future reactivation processes. This is particularly important as the landslide is located only few hundred meters from the village El Capul{\´i}n and an extension of the landslide area could cause severe damage. The next step in the landslide assessment consists of integrating the data obtained in the site-specific approach into the regional analysis. Here, the focus lies on transferring the generated data to the entire study area. The developed methodological concept yields applicable results, which is supported by different validation approaches. The susceptibility modeling as well as the landslide inventory reveal that the highest probability of landslides occurrence is related to the areas with moderate slopes covered by slope deposits. These slope deposits comprise material from old mass movements and erosion processes and are highly susceptible to landslides. The results give new insights into the landslide situation in the Chiconquiaco Mountain Range area, since previously landslide occurrence was related to steep slopes of basalt and andesite. The susceptibility map is a contribution to a better assessment of the landslide situation in the study area and simultaneously proves that it is crucial to include specific characteristics of the respective area into the modeling process, otherwise it is possible that the local conditions will not be represented correctly.}, subject = {Naturgefahren}, language = {en} } @article{GhasemiLatifiPourhashemi2022, author = {Ghasemi, Marziye and Latifi, Hooman and Pourhashemi, Mehdi}, title = {A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14235910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297258}, year = {2022}, abstract = {Monitoring tree decline in arid and semi-arid zones requires methods that can provide up-to-date and accurate information on the health status of the trees at single-tree and sample plot levels. Unmanned Aerial Vehicles (UAVs) are considered as cost-effective and efficient tools to study tree structure and health at small scale, on which detecting and delineating tree crowns is the first step to extracting varied subsequent information. However, one of the major challenges in broadleaved tree cover is still detecting and delineating tree crowns in images. The frequent dominance of coppice structure in degraded semi-arid vegetation exacerbates this problem. Here, we present a new method based on edge detection for delineating tree crowns based on the features of oak trees in semi-arid coppice structures. The decline severity in individual stands can be analyzed by extracting relevant information such as texture from the crown area. Although the method presented in this study is not fully automated, it returned high performances including an F-score = 0.91. Associating the texture indices calculated in the canopy area with the phenotypic decline index suggested higher correlations of the GLCM texture indices with tree decline at the tree level and hence a high potential to be used for subsequent remote-sensing-assisted tree decline studies.}, language = {en} } @article{EllsaesserRoellAhongshangbametal.2020, author = {Ells{\"a}ßer, Florian and R{\"o}ll, Alexander and Ahongshangbam, Joyson and Waite, Pierre-Andr{\´e} and Hendrayanto, and Schuldt, Bernhard and H{\"o}lscher, Dirk}, title = {Predicting tree sap flux and stomatal conductance from drone-recorded surface temperatures in a mixed agroforestry system — a machine learning approach}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs12244070}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220059}, year = {2020}, abstract = {Plant transpiration is a key element in the hydrological cycle. Widely used methods for its assessment comprise sap flux techniques for whole-plant transpiration and porometry for leaf stomatal conductance. Recently emerging approaches based on surface temperatures and a wide range of machine learning techniques offer new possibilities to quantify transpiration. The focus of this study was to predict sap flux and leaf stomatal conductance based on drone-recorded and meteorological data and compare these predictions with in-situ measured transpiration. To build the prediction models, we applied classical statistical approaches and machine learning algorithms. The field work was conducted in an oil palm agroforest in lowland Sumatra. Random forest predictions yielded the highest congruence with measured sap flux (r\(^2\) = 0.87 for trees and r\(^2\) = 0.58 for palms) and confidence intervals for intercept and slope of a Passing-Bablok regression suggest interchangeability of the methods. Differences in model performance are indicated when predicting different tree species. Predictions for stomatal conductance were less congruent for all prediction methods, likely due to spatial and temporal offsets of the measurements. Overall, the applied drone and modelling scheme predicts whole-plant transpiration with high accuracy. We conclude that there is large potential in machine learning approaches for ecological applications such as predicting transpiration.}, language = {en} } @article{HeinemannSiegmannThonfeldetal.2020, author = {Heinemann, Sascha and Siegmann, Bastian and Thonfeld, Frank and Muro, Javier and Jedmowski, Christoph and Kemna, Andreas and Kraska, Thorsten and Muller, Onno and Schultz, Johannes and Udelhoven, Thomas and Wilke, Norman and Rascher, Uwe}, title = {Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203557}, year = {2020}, abstract = {Land surface temperature (LST) is a fundamental parameter within the system of the Earth's surface and atmosphere, which can be used to describe the inherent physical processes of energy and water exchange. The need for LST has been increasingly recognised in agriculture, as it affects the growth phases of crops and crop yields. However, challenges in overcoming the large discrepancies between the retrieved LST and ground truth data still exist. Precise LST measurement depends mainly on accurately deriving the surface emissivity, which is very dynamic due to changing states of land cover and plant development. In this study, we present an LST retrieval algorithm for the combined use of multispectral optical and thermal UAV images, which has been optimised for operational applications in agriculture to map the heterogeneous and diverse agricultural crop systems of a research campus in Germany (April 2018). We constrain the emissivity using certain NDVI thresholds to distinguish different land surface types. The algorithm includes atmospheric corrections and environmental thermal emissions to minimise the uncertainties. In the analysis, we emphasise that the omission of crucial meteorological parameters and inaccurately determined emissivities can lead to a considerably underestimated LST; however, if the emissivity is underestimated, the LST can be overestimated. The retrieved LST is validated by reference temperatures from nearby ponds and weather stations. The validation of the thermal measurements indicates a mean absolute error of about 0.5 K. The novelty of the dual sensor system is that it simultaneously captures highly spatially resolved optical and thermal images, in order to construct the precise LST ortho-mosaics required to monitor plant diseases and drought stress and validate airborne and satellite data.}, language = {en} } @article{StrohmeierWalterRotheetal.2018, author = {Strohmeier, Michael and Walter, Thomas and Rothe, Julian and Montenegro, Sergio}, title = {Ultra-wideband based pose estimation for small unmanned aerial vehicles}, series = {IEEE Access}, volume = {6}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2018.2873571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177503}, pages = {57526-57535}, year = {2018}, abstract = {This paper proposes a 3-D local pose estimation system for a small Unmanned Aerial Vehicle (UAV) with a weight limit of 200 g and a very small footprint of 10 cm×10cm. The system is realized by fusing 3-D position estimations from an Ultra-Wide Band (UWB) transceiver network with Inertial Measurement Unit (IMU) sensor data and data from a barometric pressure sensor. The 3-D position from the UWB network is estimated using Multi-Dimensional Scaling (MDS) and range measurements between the transceivers. The range measurements are obtained using Double-Sided Two-Way Ranging (DS-TWR), thus eliminating the need for an additional clock synchronization mechanism. The sensor fusion is accomplished using a loosely coupled Extended Kalman Filter (EKF) architecture. Extensive evaluation of the proposed system shows that a position accuracy with a Root-Mean-Square Error (RMSE) of 0.20cm can be obtained. The orientation angle can be estimated with an RMSE of 1.93°.}, language = {en} } @article{StrohmeierMontenegro2017, author = {Strohmeier, Michael and Montenegro, Sergio}, title = {Coupled GPS/MEMS IMU Attitude Determination of Small UAVs with COTS}, series = {Electronics}, volume = {6}, journal = {Electronics}, number = {1}, doi = {10.3390/electronics6010015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171179}, pages = {15}, year = {2017}, abstract = {This paper proposes an attitude determination system for small Unmanned Aerial Vehicles (UAV) with a weight limit of 5 kg and a small footprint of 0.5m x 0.5 m. The system is realized by coupling single-frequency Global Positioning System (GPS) code and carrier-phase measurements with the data acquired from a Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU) using consumer-grade Components-Off-The-Shelf (COTS) only. The sensor fusion is accomplished using two Extended Kalman Filters (EKF) that are coupled by exchanging information about the currently estimated baseline. With a baseline of 48 cm, the static heading accuracy of the proposed system is comparable to the one of a commercial single-frequency GPS heading system with an accuracy of approximately 0.25°/m. Flight testing shows that the proposed system is able to obtain a reliable and stable GPS heading estimation without an aiding magnetometer.}, language = {en} } @article{GageikBenzMontenegro2015, author = {Gageik, Nils and Benz, Paul and Montenegro, Sergio}, title = {Obstacle Detection and Collision Avoidance for a UAV with Complementary Low-Cost Sensors}, series = {IEEE Access}, volume = {3}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2015.2432455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125481}, pages = {599 - 609}, year = {2015}, abstract = {This paper demonstrates an innovative and simple solution for obstacle detection and collision avoidance of unmanned aerial vehicles (UAVs) optimized for and evaluated with quadrotors. The sensors exploited in this paper are low-cost ultrasonic and infrared range finders, which are much cheaper though noisier than more expensive sensors such as laser scanners. This needs to be taken into consideration for the design, implementation, and parametrization of the signal processing and control algorithm for such a system, which is the topic of this paper. For improved data fusion, inertial and optical flow sensors are used as a distance derivative for reference. As a result, a UAV is capable of distance controlled collision avoidance, which is more complex and powerful than comparable simple solutions. At the same time, the solution remains simple with a low computational burden. Thus, memory and time-consuming simultaneous localization and mapping is not required for collision avoidance.}, language = {en} }