@article{StanglRauchRauhetal.2021, author = {Stangl, Stephanie and Rauch, Sebastian and Rauh, J{\"u}rgen and Meyer, Martin and M{\"u}ller-Nordhorn, Jacqueline and Wildner, Manfred and W{\"o}ckel, Achim and Heuschmann, Peter U.}, title = {Disparities in Accessibility to Evidence-Based Breast Cancer Care Facilities by Rural and Urban Areas in Bavaria, Germany}, series = {Cancer}, volume = {127}, journal = {Cancer}, number = {13}, doi = {10.1002/cncr.33493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239854}, pages = {2319 -- 2332}, year = {2021}, abstract = {Background Breast cancer (BC), which is most common in elderly women, requires a multidisciplinary and continuous approach to care. With demographic changes, the number of patients with chronic diseases such as BC will increase. This trend will especially hit rural areas, where the majority of the elderly live, in terms of comprehensive health care. Methods Accessibility to several cancer facilities in Bavaria, Germany, was analyzed with a geographic information system. Facilities were identified from the national BC guideline and from 31 participants in a proof-of-concept study from the Breast Cancer Care for Patients With Metastatic Disease registry. The timeframe for accessibility was defined as 30 or 60 minutes for all population points. The collection of address information was performed with different sources (eg, a physician registry). Routine data from the German Census 2011 and the population-based Cancer Registry of Bavaria were linked at the district level. Results Females from urban areas (n = 2,938,991 [ie, total of females living in urban areas]) had a higher chance for predefined accessibility to the majority of analyzed facilities in comparison with females from rural areas (n = 3,385,813 [ie, total number of females living in rural areas]) with an odds ratio (OR) of 9.0 for cancer information counselling, an OR of 17.2 for a university hospital, and an OR of 7.2 for a psycho-oncologist. For (inpatient) rehabilitation centers (OR, 0.2) and genetic counselling (OR, 0.3), women from urban areas had lower odds of accessibility within 30 or 60 minutes. Conclusions Disparities in accessibility between rural and urban areas exist in Bavaria. The identification of underserved areas can help to inform policymakers about disparities in comprehensive health care. Future strategies are needed to deliver high-quality health care to all inhabitants, regardless of residence.}, language = {en} } @phdthesis{Rueppel2014, author = {R{\"u}ppel, Frederike}, title = {Accessibility of Bilinear Interconnected Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The subject of this thesis is the controllability of interconnected linear systems, where the interconnection parameter are the control variables. The study of accessibility and controllability of bilinear systems is closely related to their system Lie algebra. In 1976, Brockett classified all possible system Lie algebras of linear single-input, single-output (SISO) systems under time-varying output feedback. Here, Brockett's results are generalized to networks of linear systems, where time-varying output feedback is applied according to the interconnection structure of the network. First, networks of linear SISO systems are studied and it is assumed that all interconnections are independently controllable. By calculating the system Lie algebra it is shown that accessibility of the controlled network is equivalent to the strong connectedness of the underlying interconnection graph in case the network has at least three subsystems. Networks with two subsystems are not captured by these proofs. Thus, we give results for this particular case under additional assumption either on the graph structure or on the dynamics of the node systems, which are both not necessary. Additionally, the system Lie algebra is studied in case the interconnection graph is not strongly connected. Then, we show how to adapt the ideas of proof to networks of multi-input, multi-output (MIMO) systems. We generalize results for the system Lie algebra on networks of MIMO systems both under output feedback and under restricted output feedback. Moreover, the case with generalized interconnections is studied, i.e. parallel edges and linear dependencies in the interconnection controls are allowed. The new setting demands to distinguish between homogeneous and heterogeneous networks. With this new setting only sufficient conditions can be found to guarantee accessibility of the controlled network. As an example, networks with Toeplitz interconnection structure are studied.}, subject = {Steuerbarkeit}, language = {en} }