@phdthesis{Hoefner2020, author = {H{\"o}fner, Christiane}, title = {Human Adipose-derived Mesenchymal Stem Cells in a 3D Spheroid Culture System - Extracellular Matrix Development, Adipogenic Differentiation, and Secretory Properties}, doi = {10.25972/OPUS-20424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The ability to differentiate into mesenchymal lineages, as well as immunomodulatory, anti-inflammatory, anti-apoptotic, and angiogenic properties give ASCs great therapeutic potential. Through their culture as multicellular, three-dimensional spheroids this potential can even be enhanced. Accordingly, 3D spheroids are not only promising candidates for the application in regenerative medicine and inflammatory disease therapy, but also for the use as building blocks in tissue engineering approaches. Due to the resemblance to physiological cell-cell and cell-matrix interactions, 3D spheroids gain higher similarity to real tissues, what makes them a valuable tool in the development of bioactive constructs equivalent to native tissues in terms of its cellular and extracellular structure. Especially, to overcome the still tremendous clinical need for adequate implants to repair soft tissue defects, 3D spheroids consisting of ASCs are a promising approach in adipose tissue engineering. Nevertheless, studies on the use of ASC-based spheroids as building blocks for fat tissue reconstruction have so far been very rare. In order to optimally exploit their therapeutic potential to further their use in regenerative medicine, including adipose tissue engineering approaches, a 3D spheroid model consisting of ASCs was characterized extensively in this work. This included not only the elucidation of the structural features, but also the differentiation capacity, gene expression, and secretory properties. In addition, the elucidation of underlying mechanisms contributing to the improved therapeutic efficiency was addressed.}, subject = {adipose}, language = {en} } @phdthesis{Slotta2019, author = {Slotta, Anja Maria}, title = {The Role of Protein Kinase D 1 in the regulation of murine adipose tissue function under physiological and pathophysiological conditions}, doi = {10.25972/OPUS-17911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179112}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Adipocytes are specialized cells found in vertebrates to ensure survival in terms of adaption to food deficit and abundance. However, their dysfunction accounts for the pathophysiology of metabolic diseases such as T2DM. Preliminary data generated by Mona L{\"o}ffler suggested that PKD1 is involved in adipocyte function. Here, I show that PKD1 expression and activity is linked to lipid metabolism of murine adipocytes. PKD1 gene expression and activity was reduced in murine white adipose tissue upon fasting, a physiological condition which induces lipolysis. Isoproterenol-stimulated lipolysis in adipose tissue and 3T3-L1 adipocytes reduced PKD1 gene expression. Silencing ATGL in adipocytes inhibited isoproterenol-stimulated lipolysis, however, the β-adrenergic stimulation of ATGL-silenced adipocytes lowered PKD1 expression levels as well. Adipose tissue of obese mice exhibited high PKD1 RNA levels but paradoxically lower protein levels of phosphorylated PKD1-Ser916. However, HFD generated a second PKD1 protein product of low molecular weight in mouse adipose tissue. Furthermore, constitutively active PKD1 predominantly displayed nuclear localization in 3T3-L1 adipocytes containing many fat vacuoles. However, adipocytes overexpressing non-functional PKD1 contained fewer lipid droplets and PKD1-KD was distributed in cytoplasm. Most importantly, deficiency of PKD1 in mouse adipose tissue caused expression of genes involved in adaptive thermogenesis such as UCP-1 and thus generated brown-like phenotype adipocytes. Thus, PKD1 is implicated in adipose tissue function and presents an interesting target for therapeutic approaches in the prevention of obesity and associated diseases.}, subject = {adipocyte}, language = {en} } @article{PfeifferKruegerMaierhoferetal.2016, author = {Pfeiffer, Susanne and Kr{\"u}ger, Jacqueline and Maierhofer, Anna and B{\"o}ttcher, Yvonne and Kl{\"o}ting, Nora and El Hajj, Nady and Schleinitz, Dorit and Sch{\"o}n, Michael R. and Dietrich, Arne and Fasshauer, Mathias and Lohmann, Tobias and Dreßler, Miriam and Stumvoll, Michael and Haaf, Thomas and Bl{\"u}her, Matthias and Kovacs, Peter}, title = {Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {27969}, doi = {10.1038/srep27969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167662}, year = {2016}, abstract = {Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity.}, language = {en} }