@article{WinterAndelovicKampfetal.2021, author = {Winter, Patrick M. and Andelovic, Kristina and Kampf, Thomas and Hansmann, Jan and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Zernecke, Alma and Herold, Volker}, title = {Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {23}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-021-00725-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259152}, pages = {34}, year = {2021}, abstract = {Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{-/-}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{-/-}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{-/-}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.}, language = {en} } @article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} }