@phdthesis{Herb2023, author = {Herb, Stefanie Maria}, title = {Regulation of MCMV immediate early gene expression by virally encoded miRNAs}, doi = {10.25972/OPUS-32331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323314}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Gene expression in eukaryotic cells is regulated by the combinatorial action of numerous gene-regulatory factors, among which microRNAs (miRNAs) play a fundamental role at the post-transcriptional level. miRNAs are single-stranded, small non-coding RNA molecules that emerge in a cascade-like fashion via the generation of primary and precursor miRNAs. Mature miRNAs become functional when incorporated into the RNA induced silencing complex (RISC). miRNAs guide RISCs to target mRNAs in a sequence-specific fashion. To this end, base-pairs are usually formed between the miRNA seed region, spanning nucleotide positions 2 to 8 (from the 5' end) and the 3'UTR of the target mRNA. Once miRNA-mRNA interaction is established, RISC represses translation and occasionally induces direct or indirect target mRNA degradation. Interestingly, miRNAs are expressed not only in every multicellular organism but are also encoded by several viruses, predominately by herpesviruses. By controlling both, cellular as well as viral mRNA transcripts, virus-encoded miRNAs confer many beneficial effects on viral growth and persistence. Murine cytomegalovirus (MCMV) is a ß-herpesvirus and so far, 29 mature MCMV-encoded miRNAs have been identified during lytic infection. Computational analysis of previously conducted photoactivated ribonucleotide-enhanced individual nucleotide resolution crosslinking immunoprecipitation (PAR-iCLIP) experiments identified a read cluster within the 3' untranslated region (3'UTR) of the immediate early 3 (IE3) transcript in MCMV. Based on miRNA target predictions, two highly abundant MCMV miRNAs, namely miR-m01-2-3p and miR-M23-2-3p were found to potentially bind to two closely positioned target sites within the IE3 PAR-iCLIP peak. To confirm this hypothesis, we performed luciferase assays and showed that activity values of a luciferase fused with the 3'UTR of IE3 were downregulated in the presence of miR-m01- 2 and miR-M23-2. In a second step, we investigated the effect of pre-expression of miR-m01-2 and miR-M23-2 on the induction of virus replication. After optimizing the transfection procedure by comparing different reagents and conditions, plaque formation was monitored. We could demonstrate that the replication cycle of the wild-type but not of our MCMV mutant that harbored point mutations in both miRNA binding sites within the IE3-3'UTR, was significantly delayed in the presence of miR-m01-2 and miR-M23-2. This confirmed that miR-m01-2 and miR-M23-2 functionally target the major transcription factor IE3 which acts as an indispensable regulator of viral gene expression during MCMV lytic infection. Repression of the major immediate early genes by viral miRNAs is a conserved feature of cytomegaloviruses. The functional role of this type of regulation can now be studied in the MCMV mouse model.}, subject = {miRNS}, language = {en} } @article{MarquardtHartrampfKollmannsbergeretal.2023, author = {Marquardt, Andr{\´e} and Hartrampf, Philipp and Kollmannsberger, Philip and Solimando, Antonio G. and Meierjohann, Svenja and K{\"u}bler, Hubert and Bargou, Ralf and Schilling, Bastian and Serfling, Sebastian E. and Buck, Andreas and Werner, Rudolf A. and Lapa, Constantin and Krebs, Markus}, title = {Predicting microenvironment in CXCR4- and FAP-positive solid tumors — a pan-cancer machine learning workflow for theranostic target structures}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers15020392}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305036}, year = {2023}, abstract = {(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database — representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.}, language = {en} } @phdthesis{Vardapour2022, author = {Vardapour, Romina}, title = {Mutations in the DROSHA/DGCR8 microprocessor complex in high-risk blastemal Wilms tumor}, doi = {10.25972/OPUS-23140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Wilms tumor (WT) or nephroblastoma is the most common kidney tumor in childhood. Several genetic alterations have been identified in WT over the past years. However, a clear-cut underlying genetic defect has remained elusive. Growing evidence suggests that miRNA processing genes play a major role in the formation of pediatric tumors, including WT. We and others have identified the microprocessor genes DROSHA and DGCR8 as key players in Wilms tumorigenesis. Exome sequence analysis of a cohort of blastemal-type WTs revealed the recurrent hotspot mutations DROSHA E1147K and DGCR8 E518K mapping to regions important for catalyic activity and RNA-binding. These alterations were expected to affect processing of miRNA precursors, ultimately leading to altered miRNA expression. Indeed, mutated tumor samples were characterized by distinct miRNA patterns. Notably, these mutations have been observed almost exclusively in WT, suggesting that they play a specific role in WT formation. The aim of the present work was to first examine the mutation frequency of DROSHA E1147K and DGCR8 E518K in a larger cohort of WTs, and to further characterize these microprocessor gene mutations as potential oncogenic drivers for WT formation. Screening of additional 700 WT samples by allele-specific PCR revealed a high frequency of DROSHA E1147K and DGCR8 E518K mutations, with the highest incidence found in tumors of high-risk histology. DROSHA E1147K was heterozygously expressed in all cases, which strongly implies a dominant negative effect. In contrast, DGCR8 E518K exclusively exhibited homozygous expression, suggestive for the mutation to act recessive. To functionally assess the mutations of the microprocessor complex in vitro, I generated stable HEK293T cell lines with inducible overexpression of DROSHA E1147K, and stable mouse embryonic stem cell (mESC) lines with inducible overexpression of DGCR8 E518K. To mimic the homozygous expression observed in WT, DGCR8 mESC lines were generated on a DGCR8 knockout background. Inducible overexpression of wild-type or mutant DROSHA in HEK293T cells showed that DROSHA E1147K leads to a global downregulation of miRNA expression. It has previously been shown that the knockout of DGCR8 in mESCs also results in a significant downregulation of canonical miRNAs. Inducible overexpression of wild type DGCR8 rescued this processing defect. DGCR8 E518K on the other hand, only led to a partial rescue. Differentially expressed miRNAs comprised members of the ESC cell cycle (ESCC) and let-7 miRNA families whose antagonism is known to play a pivotal role in the regulation of stem cell properties. Along with altered miRNA expression, DGCR8-E518K mESCs exhibited alterations in target gene expression potentially affecting various biological processes. We could observe decreased proliferation rates, most likely due to reduced cell viability. DGCR8-E518K seemed to be able to overcome the block of G1-S transition and to rescue the cell cycle defect in DGCR8-KO mESCs, albeit not to the full extent like DGCR8-wild-type. Moreover, DGCR8-E518K appeared to be unable to completely block epithelial-to-mesenchymal transition (EMT). Embryoid bodies (EBs) with the E518K mutation, however, were still able to silence the self-renewal program rescuing the differentiation defect in DGCR8-KO mESCs. Taken together, I could show that DROSHA E1147K and DGCR8 E518K are frequent events in WT with the highest incidence in high-risk tumor entities. Either mutation led to altered miRNA expression in vitro confirming our previous findings in tumor samples. While the DROSHA E1147K mutation resulted in a global downregulation of canonical miRNAs, DGCR8 E518K was able to retain significant activity of the microprocessor complex, suggesting that partial reduction of activity or altered specificity may be critical in Wilms tumorigenesis. Despite the significant differences found in the miRNA and mRNA profiles of DGCR8 E518K and DGCR8-wild-type mESCs, functional analysis showed that DGCR8 E518K could mostly restore important cellular functions in the knockout and only slightly differed from the wild-type situation. Further studies in a rather physiological environment, such as in a WT blastemal model system, may additionally help to better assess the subtle differences between DGCR8 E518K and DGCR8 wild-type observed in our mESC lines. Together with our findings, these model systems may thus contribute to better understand the role of these microprocessor mutations in the formation of WT.}, subject = {Nephroblastom}, language = {en} } @article{VetrivelZhangEngeletal.2022, author = {Vetrivel, Sharmilee and Zhang, Ru and Engel, Mareen and Oßwald, Andrea and Watts, Deepika and Chen, Alon and Wielockx, Ben and Sbiera, Silviu and Reincke, Martin and Riester, Anna}, title = {Characterization of adrenal miRNA-based dysregulations in Cushing's syndrome}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {14}, issn = {1422-0067}, doi = {10.3390/ijms23147676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284394}, year = {2022}, abstract = {MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing's syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing's disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.}, language = {en} } @article{DetomasPivonelloPellegrinietal.2022, author = {Detomas, Mario and Pivonello, Claudia and Pellegrini, Bianca and Landwehr, Laura-Sophie and Sbiera, Silviu and Pivonello, Rosario and Ronchi, Cristina L. and Colao, Annamaria and Altieri, Barbara and De Martino, Maria Cristina}, title = {MicroRNAs and long non-coding RNAs in adrenocortical carcinoma}, series = {Cells}, volume = {11}, journal = {Cells}, number = {14}, issn = {2073-4409}, doi = {10.3390/cells11142234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281795}, year = {2022}, abstract = {Non-coding RNAs (ncRNAs) are a type of genetic material that do not encode proteins but regulate the gene expression at an epigenetic level, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The role played by ncRNAs in many physiological and pathological processes has gained attention during the last few decades, as they might be useful in the diagnosis, treatment and management of several human disorders, including endocrine and oncological diseases. Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine cancer, still characterized by high mortality and morbidity due to both endocrine and oncological complications. Despite the rarity of this disease, recently, the role of ncRNA has been quite extensively evaluated in ACC. In order to better explore the role of the ncRNA in human ACC, this review summarizes the current knowledge on ncRNA dysregulation in ACC and its potential role in the diagnosis, treatment, and management of this tumor.}, language = {en} } @article{VetrivelZhangEngeletal.2021, author = {Vetrivel, Sharmilee and Zhang, Ru and Engel, Mareen and Altieri, Barbara and Braun, Leah and Osswald, Andrea and Bidlingmaier, Martin and Fassnacht, Martin and Beuschlein, Felix and Reincke, Martin and Chen, Alon and Sbiera, Silviu and Riester, Anna}, title = {Circulating microRNA Expression in Cushing's Syndrome}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.620012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229761}, year = {2021}, abstract = {Context Cushing's syndrome (CS) is a rare disease of endogenous hypercortisolism associated with high morbidity and mortality. Diagnosis and classification of CS is still challenging. Objective Circulating microRNAs (miRNAs) are minimally invasive diagnostic markers. Our aim was to characterize the circulating miRNA profiles of CS patients and to identify distinct profiles between the two major CS subtypes. Methods We included three groups of patients from the German Cushing's registry: ACTH-independent CS (Cortisol-Producing-Adenoma; CPA), ACTH-dependent pituitary CS (Cushing's Disease; CD), and patients in whom CS had been ruled out (controls). Profiling of miRNAs was performed by next-generation-sequencing (NGS) in serum samples of 15 CS patients (each before and after curative surgery) and 10 controls. Significant miRNAs were first validated by qPCR in the discovery cohort and then in an independent validation cohort of 20 CS patients and 11 controls. Results NGS identified 411 circulating miRNAs. Differential expression of 14 miRNAs were found in the pre- and postoperative groups. qPCR in the discovery cohort validated 5 of the significant miRNAs from the preoperative group analyses. Only, miR-182-5p was found to be significantly upregulated in the CD group of the validation cohort. Comparing all CS samples as a group with the controls did not reveal any significant differences in expression. Outcome In conclusion, our study identified miR-182-5p as a possible biomarker for CD, which has to be validated in a prospective cohort. Furthermore, our results suggest that presence or absence of ACTH might be at least as relevant for miRNA expression as hypercortisolism itself.}, language = {en} } @article{OroujiPeitschOroujietal.2020, author = {Orouji, Elias and Peitsch, Wiebke K. and Orouji, Azadeh and Houben, Roland and Utikal, Jochen}, title = {Unique role of histone methyltransferase PRDM8 in the tumorigenesis of virus-negative Merkel cell carcinoma}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers12041057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203815}, year = {2020}, abstract = {Merkel cell carcinoma (MCC) is a deadly skin cancer, and about 80\% of its cases have been shown to harbor integrated Merkel polyomavirus in the tumor cell genome. Viral oncoproteins expressed in the tumor cells are considered as the oncogenic factors of these virus-positive Merkel cell carcinoma (VP-MCC). In contrast, the molecular pathogenesis of virus-negative MCC (VN-MCC) is less well understood. Using gene expression analysis of MCC cell lines, we found histone methyltransferase PRDM8 to be elevated in VN-MCC. This finding was confirmed by immunohistochemical analysis of MCC tumors, revealing that increased PRDM8 expression in VN-MCC is also associated with increased H3K9 methylation. CRISPR-mediated silencing of PRDM8 in MCC cells further supported the histone methylating role of this protein in VN-MCC. We also identified miR-20a-5p as a negative regulator of PRDM8. Taken together, our findings provide insights into the role of PRDM8 as a histone methyltransferase in VN-MCC tumorigenesis.}, language = {en} } @article{AltieriDiDatoModicaetal.2020, author = {Altieri, Barbara and Di Dato, Carla and Modica, Roberta and Bottiglieri, Filomena and Di Sarno, Antonella and Pittaway, James F.H. and Martini, Chiara and Faggiano, Antongiulio and Colao, Annamaria}, title = {Bone metabolism and vitamin D implication in gastroenteropancreatic neuroendocrine tumors}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {4}, issn = {2072-6643}, doi = {10.3390/nu12041021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203823}, year = {2020}, abstract = {Patients affected by gastroenteropancreatic-neuroendocrine tumors (GEP-NETs) have an increased risk of developing osteopenia and osteoporosis, as several factors impact on bone metabolism in these patients. In fact, besides the direct effect of bone metastasis, bone health can be affected by hormone hypersecretion (including serotonin, cortisol, and parathyroid hormone-related protein), specific microRNAs, nutritional status (which in turn could be affected by medical and surgical treatments), and vitamin D deficiency. In patients with multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome associated with NET occurrence, bone damage may carry other consequences. Osteoporosis may negatively impact on the quality of life of these patients and can increment the cost of medical care since these patients usually live with their disease for a long time. However, recommendations suggesting screening to assess bone health in GEP-NET patients are missing. The aim of this review is to critically analyze evidence on the mechanisms that could have a potential impact on bone health in patients affected by GEP-NET, focusing on vitamin D and its role in GEP-NET, as well as on factors associated with MEN1 that could have an impact on bone homeostasis.}, language = {en} } @phdthesis{Karl2017, author = {Karl, Franziska}, title = {The role of miR-21 in the pathophysiology of neuropathic pain using the model of B7-H1 knockout mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The impact of microRNA (miRNA) as key players in the regulation of immune and neuronal gene expression and their role as master switches in the pathophysiology of neuropathic pain is increasingly recognized. miR-21 is a promising candidate that could be linked to the immune and the nociceptive system. To further investigate the pathophysiological role of miR-21 in neuropathic pain, we assesed mice deficient of B7 homolog 1 (B7-H1 ko), a protein with suppressive effect on inflammatory responses. B7-H1 ko mice and wildtype littermates (WT) of three different age-groups, young (8 weeks), middle-aged (6 months), and old (12 months) received a spared nerve injury (SNI). Thermal withdrawal latencies and mechanical withdrawal thresholds were determined. Further, we investigated anxiety-, depression-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, dorsal root ganglia and white blood cells (WBC) at distinct time points after SNI. Na{\"i}ve B7-H1 ko mice showed mechanical hyposensitivity with increasing age. Young and middle-aged B7-H1 ko mice displayed lower mechanical withdrawal thresholds compared to WT mice. From day three after SNI both genotypes developed mechanical and heat hypersensitivity, without intergroup differences. As supported by the results of three behavioral tests, no relevant differences were found for anxiety-like behavior after SNI in B7-H1 ko and WT mice. Also, there was no indication of depression-like behavior after SNI or any effect of SNI on cognition in both genotypes. The injured nerves of B7-H1 ko and WT mice showed higher miR-21 expression and invasion of macrophages and T cells 7 days after SNI without intergroup differences. Perineurial miR-21 inhibitor injection reversed SNI-induced mechanical and heat hypersensitivity in old B7-H1 ko and WT mice. This study reveals that reduced mechanical thresholds and heat withdrawal latencies are associated with miR-21 induction in the tibial and common peroneal nerve after SNI, which can be reversed by perineurial injection of a miR-21 inhibitor. Contrary to expectations, miR-21 expression levels were not higher in B7-H1 ko compared to WT mice. Thus, the B7-H1 ko mouse may be of minor importance for the study of miR-21 related pain. However, these results spot the contribution of miR-21 in the pathophysiology of neuropathic pain and emphasize the crucial role of miRNA in the regulation of neuronal and immune circuits that contribute to neuropathic pain.}, subject = {neuropathic pain}, language = {en} } @article{KarlGriesshammerUeceyleretal.2017, author = {Karl, Franziska and Grießhammer, Anne and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Differential Impact of miR-21 on Pain and Associated Affective and Cognitive Behavior after Spared Nerve Injury in B7-H1 ko Mouse}, series = {Frontiers in Molecular Neuroscience}, volume = {10}, journal = {Frontiers in Molecular Neuroscience}, number = {219}, doi = {10.3389/fnmol.2017.00219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170722}, year = {2017}, abstract = {MicroRNAs (miRNAs) are increasingly recognized as regulators of immune and neuronal gene expression and are potential master switches in neuropathic pain pathophysiology. miR-21 is a promising candidate that may link the immune and the pain system. To investigate the pathophysiological role of miR-21 in neuropathic pain, we assessed mice deficient of B7 homolog 1 (B7-H1), a major inhibitor of inflammatory responses. In previous studies, an upregulation of miR-21 had been shown in mouse lymphocytes. Young (8 weeks), middle-aged (6 months), and old (12 months) B7-H1 ko mice and wildtype littermates (WT) received a spared nerve injury (SNI). We assessed thermal withdrawal latencies and mechanical withdrawal thresholds. Further, we performed tests for anxiety-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, and dorsal root ganglia (DRG) at distinct time points after SNI. We found mechanical hyposensitivity with increasing age of na{\"i}ve B7-H1 ko mice. Young and middle-aged B7-H1 ko mice were more sensitive to mechanical stimuli compared to WT mice (young: p < 0.01, middle-aged: p < 0.05). Both genotypes developed mechanical and heat hypersensitivity (p < 0.05) after SNI, without intergroup differences. No relevant differences were found after SNI in three tests for anxiety like behavior in B7-H1 ko and WT mice. Also, SNI had no effect on cognition. B7-H1 ko and WT mice showed a higher miR-21 expression (p < 0.05) and invasion of macrophages and T cells in the injured nerve 7 days after SNI without intergroup differences. Our study reveals that increased miR-21 expression in peripheral nerves after SNI is associated with reduced mechanical and heat withdrawal thresholds. These results point to a role of miR-21 in the pathophysiology of neuropathic pain, while affective behavior and cognition seem to be spared. Contrary to expectations, B7-H1 ko mice did not show higher miR-21 expression than WT mice, thus, a B7-H1 knockout may be of limited relevance for the study of miR-21 related pain.}, language = {en} } @article{LudwigWernerBackesetal.2016, author = {Ludwig, Nicole and Werner, Tamara V. and Backes, Christina and Trampert, Patrick and Gessler, Manfred and Keller, Andreas and Lenhof, Hans-Peter and Graf, Norbert and Meese, Eckart}, title = {Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes}, series = {International Journal of Mokecular Sciences}, volume = {17}, journal = {International Journal of Mokecular Sciences}, number = {4}, doi = {10.3390/ijms17040475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165430}, pages = {475}, year = {2016}, abstract = {Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT}, language = {en} } @article{KellerLeidingerVogeletal.2014, author = {Keller, Andreas and Leidinger, Petra and Vogel, Britta and Backes, Christina and ElSharawy, Abdou and Galata, Valentina and Mueller, Sabine C. and Marquart, Sabine and Schrauder, Michael G. and Strick, Reiner and Bauer, Andrea and Wischhusen, J{\"o}rg and Beier, Markus and Kohlhaas, Jochen and Katus, Hugo A. and Hoheisel, J{\"o}rg and Franke, Andre and Meder, Benjamin and Meese, Eckart}, title = {miRNAs can be generally associated with human pathologies as exemplified for miR-144*}, series = {BMC MEDICINE}, volume = {12}, journal = {BMC MEDICINE}, issn = {1741-7015}, doi = {10.1186/s12916-014-0224-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114349}, pages = {224}, year = {2014}, abstract = {Background: miRNA profiles are promising biomarker candidates for a manifold of human pathologies, opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs frequently as markers for specific traits, we asked whether a general pattern for miRNAs across many diseases exists. Methods: We evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different cancer and non-cancer diseases as well as unaffected controls. The results were validated on 319 individuals using qRT-PCR. Results: We discovered 34 miRNAs with strong disease association. Among those, we found substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 ( 95\% CI: 0.703-0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-155*, as rather stable markers, offering reasonable control miRNAs for future studies. The strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an additional disease phenotype not included in the screening phase has been included as the 20th trait. Conclusions: Our study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-PCR validations further underscores the high potential of specific blood-borne miRNA patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally dysregulated in human pathologies. Although these markers are not specific to certain diseases they may add to the diagnosis in combination with other markers, building a specific signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that may be used as control markers.}, language = {en} } @article{VerghoKneitzRosenwaldetal.2014, author = {Vergho, Daniel and Kneitz, Susanne and Rosenwald, Andreas and Scherer, Charlotte and Spahn, Martin and Burger, Maximilian and Riedmiller, Hubertus and Kneitz, Burkhard}, title = {Combination of expression levels of miR-21 and miR-126 is associated with cancer-specific survival in clear-cell renal cell carcinoma}, doi = {10.1186/1471-2407-14-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110061}, year = {2014}, abstract = {Background Renal cell carcinoma (RCC) is marked by high mortality rate. To date, no robust risk stratification by clinical or molecular prognosticators of cancer-specific survival (CSS) has been established for early stages. Transcriptional profiling of small non-coding RNA gene products (miRNAs) seems promising for prognostic stratification. The expression of miR-21 and miR-126 was analysed in a large cohort of RCC patients; a combined risk score (CRS)-model was constructed based on expression levels of both miRNAs. Methods Expression of miR-21 and miR-126 was evaluated by qRT-PCR in tumour and adjacent non-neoplastic tissue in n = 139 clear cell RCC patients. Relation of miR-21 and miR-126 expression with various clinical parameters was assessed. Parameters were analysed by uni- and multivariate COX regression. A factor derived from the z-score resulting from the COX model was determined for both miRs separately and a combined risk score (CRS) was calculated multiplying the relative expression of miR-21 and miR-126 by this factor. The best fitting COX model was selected by relative goodness-of-fit with the Akaike information criterion (AIC). Results RCC with and without miR-21 up- and miR-126 downregulation differed significantly in synchronous metastatic status and CSS. Upregulation of miR-21 and downregulation of miR-126 were independently prognostic. A combined risk score (CRS) based on the expression of both miRs showed high sensitivity and specificity in predicting CSS and prediction was independent from any other clinico-pathological parameter. Association of CRS with CSS was successfully validated in a testing cohort containing patients with high and low risk for progressive disease. Conclusions A combined expression level of miR-21 and miR-126 accurately predicted CSS in two independent RCC cohorts and seems feasible for clinical application in assessing prognosis.}, language = {en} } @phdthesis{ZeeshangebMajeed2014, author = {Zeeshan [geb. Majeed], Saman}, title = {Implementation of Bioinformatics Methods for miRNA and Metabolic Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Dynamic interactions and their changes are at the forefront of current research in bioinformatics and systems biology. This thesis focusses on two particular dynamic aspects of cellular adaptation: miRNA and metabolites. miRNAs have an established role in hematopoiesis and megakaryocytopoiesis, and platelet miRNAs have potential as tools for understanding basic mechanisms of platelet function. The thesis highlights the possible role of miRNAs in regulating protein translation in platelet lifespan with relevance to platelet apoptosis and identifying involved pathways and potential key regulatory molecules. Furthermore, corresponding miRNA/target mRNAs in murine platelets are identified. Moreover, key miRNAs involved in aortic aneurysm are predicted by similar techniques. The clinical relevance of miRNAs as biomarkers, targets, resulting later translational therapeutics, and tissue specific restrictors of genes expression in cardiovascular diseases is also discussed. In a second part of thesis we highlight the importance of scientific software solution development in metabolic modelling and how it can be helpful in bioinformatics tool development along with software feature analysis such as performed on metabolic flux analysis applications. We proposed the "Butterfly" approach to implement efficiently scientific software programming. Using this approach, software applications were developed for quantitative Metabolic Flux Analysis and efficient Mass Isotopomer Distribution Analysis (MIDA) in metabolic modelling as well as for data management. "LS-MIDA" allows easy and efficient MIDA analysis and, with a more powerful algorithm and database, the software "Isotopo" allows efficient analysis of metabolic flows, for instance in pathogenic bacteria (Salmonella, Listeria). All three approaches have been published (see Appendices).}, subject = {miRNS}, language = {en} } @article{SchmittBackesNourkamiTutdibietal.2012, author = {Schmitt, Jana and Backes, Christina and Nourkami-Tutdibi, Nasenien and Leidinger, Petra and Deutscher, Stephanie and Beier, Markus and Gessler, Manfred and Graf, Norbert and Lenhof, Hans-Peter and Keller, Andreas and Meese, Eckart}, title = {Treatment-independent miRNA signature in blood of wilms tumor patients}, series = {BMC Genomics}, volume = {13}, journal = {BMC Genomics}, number = {379}, doi = {10.1186/1471-2164-13-379}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124034}, year = {2012}, abstract = {Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5\% and of patients after chemotherapy an accuracy of 97.0\%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment.}, language = {en} }