@article{BohnertGeorgiadesMonoranuetal.2021, author = {Bohnert, Simone and Georgiades, Kosmas and Monoranu, Camelia-Maria and Bohnert, Michael and B{\"u}ttner, Andreas and Ondruschka, Benjamin}, title = {Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, number = {6}, issn = {1437-1596}, doi = {10.1007/s00414-021-02699-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266934}, pages = {2315-2322}, year = {2021}, abstract = {The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.}, language = {en} } @article{BrachnerFragouliDuarteetal.2020, author = {Brachner, Andreas and Fragouli, Despina and Duarte, Iola F. and Farias, Patricia M. A. and Dembski, Sofia and Ghosh, Manosij and Barisic, Ivan and Zdzieblo, Daniela and Vanoirbeek, Jeroen and Schwabl, Philipp and Neuhaus, Winfried}, title = {Assessment of human health risks posed by nano-and microplastics is currently not feasible}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {23}, issn = {1660-4601}, doi = {10.3390/ijerph17238832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219423}, year = {2020}, abstract = {The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7\% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.}, language = {en} }