@article{BorojevićJaukovićKukoljetal.2022, author = {Borojević, Ana and Jauković, Aleksandra and Kukolj, Tamara and Mojsilović, Slavko and Obradović, Hristina and Trivanović, Drenka and Živanović, Milena and Zečević, Željko and Simić, Marija and Gobeljić, Borko and Vujić, Dragana and Bugarski, Diana}, title = {Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {2}, issn = {2218-273X}, doi = {10.3390/biom12020323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262203}, year = {2022}, abstract = {The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine — mainly in combination with various biomaterial matrices — has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs' features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.}, language = {en} } @article{PereiraTrivanovićStahlhutetal.2022, author = {Pereira, Ana Rita and Trivanović, Drenka and Stahlhut, Philipp and Rudert, Maximilian and Groll, J{\"u}rgen and Herrmann, Marietta}, title = {Preservation of the na{\"i}ve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, doi = {10.1177/20417314221074453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268835}, pages = {1-12}, year = {2022}, abstract = {The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their na{\"i}ve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the na{\"i}ve features of BM-MSC.}, language = {en} } @article{RamirezRodriguezPereiraHerrmannetal.2021, author = {Ram{\´i}rez-Rodr{\´i}guez, Gloria Bel{\´e}n and Pereira, Ana Rita and Herrmann, Marietta and Hansmann, Jan and Delgado-L{\´o}pez, Jos{\´e} Manuel and Sprio, Simone and Tampieri, Anna and Sandri, Monica}, title = {Biomimetic mineralization promotes viability and differentiation of human mesenchymal stem cells in a perfusion bioreactor}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms22031447}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285804}, year = {2021}, abstract = {In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.}, language = {en} }