@article{HagspielFantuzziDewhurstetal.2021, author = {Hagspiel, Stephan and Fantuzzi, Felipe and Dewhurst, Rian D. and G{\"a}rtner, Annalena and Lindl, Felix and Lamprecht, Anna and Braunschweig, Holger}, title = {Adducts of the parent boraphosphaketene H\(_2\)BPCO and their decarbonylative insertion chemistry}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202103521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256470}, pages = {13666-13670}, year = {2021}, abstract = {The first examples of Lewis base adducts of the parent boraphosphaketene (H\(_2\)B-PCO) and their cyclodimers are prepared. One of these adducts is shown to undergo mild decarbonylation and phosphinidene insertion into a B-C bond of a borole, forming very rare examples of 1,2-phosphaborinines, B/P isosteres of benzene. The strong donor properties of these 1,2-phosphaborinines are confirmed by the synthesis of their π complexes with the Group 6 metals.}, language = {en} } @article{FuchsStenderTrupkeetal.2015, author = {Fuchs, F. and Stender, B. and Trupke, M. and Simin, D. and Pflaum, J. and Dyakonov, V. and Astakhov, G.V.}, title = {Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7578}, doi = {10.1038/ncomms8578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148502}, year = {2015}, abstract = {Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.}, language = {en} }