@article{WunschZhangHansonetal.2015, author = {Wunsch, Marie and Zhang, Wenji and Hanson, Jodi and Caspell, Richard and Karulin, Alexey Y. and Recks, Mascha S. and Kuerten, Stefanie and Sundararaman, Srividya and Lehmann, Paul V.}, title = {Characterization of the HCMV-Specific CD4 T Cell Responses that Are Associated with Protective Immunity}, series = {Viruses}, volume = {7}, journal = {Viruses}, doi = {10.3390/v7082828}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151462}, pages = {4414 -- 4437}, year = {2015}, abstract = {Most humans become infected with human cytomegalovirus (HCMV). Typically, the immune system controls the infection, but the virus persists and can reactivate in states of immunodeficiency. While substantial information is available on the contribution of CD8 T cells and antibodies to anti-HCMV immunity, studies of the T\(_{H}\)1, T\(_{H}\)2, and T\(_{H}\)17 subsets have been limited by the low frequency of HCMV-specific CD4 T cells in peripheral blood mononuclear cell (PBMC). Using the enzyme-linked Immunospot\(^{®}\) assay (ELISPOT) that excels in low frequency measurements, we have established these in a sizable cohort of healthy HCMV controllers. Cytokine recall responses were seen in all seropositive donors. Specifically, interferon (IFN)-\({\gamma}\) and/or interleukin (IL)-17 were seen in isolation or with IL-4 in all test subjects. IL-4 recall did not occur in isolation. While the ratios of T\(_{H}\)1, T\(_{H}\)2, and T\(_{H}\)17 cells exhibited substantial variations between different individuals these ratios and the frequencies were relatively stable when tested in samples drawn up to five years apart. IFN-\({\gamma}\) and IL-2 co-expressing polyfunctional cells were seen in most subjects. Around half of the HCMV-specific CD4 cells were in a reversible state of exhaustion. The data provided here established the T\(_{H}\)1, T\(_{H}\)2, and T\(_{H}\)17 characteristic of the CD4 cells that convey immune protection for successful immune surveillance against which reactivity can be compared when the immune surveillance of HCMV fails.}, language = {en} } @article{KellerLeidingerVogeletal.2014, author = {Keller, Andreas and Leidinger, Petra and Vogel, Britta and Backes, Christina and ElSharawy, Abdou and Galata, Valentina and Mueller, Sabine C. and Marquart, Sabine and Schrauder, Michael G. and Strick, Reiner and Bauer, Andrea and Wischhusen, J{\"o}rg and Beier, Markus and Kohlhaas, Jochen and Katus, Hugo A. and Hoheisel, J{\"o}rg and Franke, Andre and Meder, Benjamin and Meese, Eckart}, title = {miRNAs can be generally associated with human pathologies as exemplified for miR-144*}, series = {BMC MEDICINE}, volume = {12}, journal = {BMC MEDICINE}, issn = {1741-7015}, doi = {10.1186/s12916-014-0224-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114349}, pages = {224}, year = {2014}, abstract = {Background: miRNA profiles are promising biomarker candidates for a manifold of human pathologies, opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs frequently as markers for specific traits, we asked whether a general pattern for miRNAs across many diseases exists. Methods: We evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different cancer and non-cancer diseases as well as unaffected controls. The results were validated on 319 individuals using qRT-PCR. Results: We discovered 34 miRNAs with strong disease association. Among those, we found substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 ( 95\% CI: 0.703-0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-155*, as rather stable markers, offering reasonable control miRNAs for future studies. The strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an additional disease phenotype not included in the screening phase has been included as the 20th trait. Conclusions: Our study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-PCR validations further underscores the high potential of specific blood-borne miRNA patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally dysregulated in human pathologies. Although these markers are not specific to certain diseases they may add to the diagnosis in combination with other markers, building a specific signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that may be used as control markers.}, language = {en} }