@article{VellmerHartlebFraderaSolaetal.2022, author = {Vellmer, Tim and Hartleb, Laura and Fradera Sola, Albert and Kramer, Susanne and Meyer-Natus, Elisabeth and Butter, Falk and Janzen, Christian J.}, title = {A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1010514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301372}, year = {2022}, abstract = {A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.}, language = {en} } @article{HampeFriedmanEdgertonetal.2017, author = {Hampe, Irene A. I. and Friedman, Justin and Edgerton, Mira and Morschh{\"a}user, Joachim}, title = {An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1006655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158883}, pages = {e1006655}, year = {2017}, abstract = {The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches.}, language = {en} } @phdthesis{Regneri2013, author = {Regneri, Janine}, title = {Transcriptional regulation of cancer genes in the Xiphophorus melanoma system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The Xiphophorus melanoma system is a useful animal model for the study of the genetic basis of tumor formation. The development of hereditary melanomas in interspecific hybrids of Xiphophorus is connected to pigment cell specific overexpression of the mutationally activated receptor tyrosine kinase Xmrk. In purebred fish the oncogenic function of xmrk is suppressed by the molecularly still unidentified locus R. The xmrk oncogene was generated by a gene duplication event from the Xiphophorus egfrb gene and thereby has acquired a new 5' regulatory sequence, which has probably altered the transcriptional control of the oncogene. So far, the xmrk promoter region was still poorly characterized and the molecular mechanism by which R controls xmrk-induced melanoma formation in Xiphophorus still remained to be elucidated. To test the hypothesis that R controls melanoma development in Xiphophorus on the transcriptional level, the first aim of the thesis was to gain a deeper insight into the transcriptional regulation of the xmrk oncogene. To this end, a quantitative analysis of xmrk transcript levels in different Xiphophorus genotypes carrying either the highly tumorigenic xmrkB or the non-tumorigenic xmrkA allele was performed. I was able to demonstrate that expression of the tumorigenic xmrkB allele is strongly increased in malignant melanomas of R-free backcross hybrids compared to benign lesions, macromelanophore spots, and healthy skin. The expression level of the non-tumorigenic xmrkA allele, in contrast, is not influenced by the presence or absence of R. These findings strongly indicate that differential transcriptional regulation of the xmrk promoter triggers the tumorigenic potential of these xmrk alleles. To functionally characterize the xmrk promoter region, I established a luciferase assay using BAC clones containing the genomic regions where xmrk and egfrb are located for generation of reporter constructs. This approach showed for the first time a melanoma cell specific transcriptional activation of xmrkB by its flanking regions, thereby providing the first functional evidence that the xmrk oncogene is controlled by a pigment cell specific promoter region. Subsequent analysis of different deletion constructs of the xmrkB BAC reporter construct strongly indicated that the regulatory elements responsible for the tumor-inducing overexpression of xmrkB in melanoma cells are located within 67 kb upstream of the xmrk oncogene. Taken together, these data indicate that melanoma formation in Xiphophorus is regulated by a tight transcriptional control of the xmrk oncogene and that the R locus acts through this mechanism. As the identification of the R-encoded gene(s) is necessary to fully understand how melanoma formation in Xiphophorus is regulated, I furthermore searched for alternative R candidate genes in this study. To this end, three genes, which are located in the genomic region where R has been mapped, were evaluated for their potential to be a crucial constituent of the regulator locus R. Among these genes, I identified pdcd4a, the ortholog of the human tumor suppressor gene PDCD4, as promising new candidate, because this gene showed the expression pattern expected from the crucial tumor suppressor gene encoded at the R locus.}, subject = {Melanom}, language = {en} }