@phdthesis{Bartl2012, author = {Bartl, Jasmin}, title = {Impairment of insulin signaling pathway in Alzheimer's disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74197}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The neurodegenerative disorder Alzheimer's disease (AD) is the cause of approximately 60\% of the world's 35 million patients suffering from dementia. Current research focuses here are on association with other diseases such as diabetes type 2 (T2DM), possible genetic markers, specific signal transduction pathways within the brain and potential protein modification, because the pathogenesis and etiology of AD are still not fully understood. Specifically association of T2DM with AD came to the focus with the so-called "Rotterdam study" in 1999, indicating that T2DM doubles the risk of developing AD. In the meantime, it is known that the prevalence rate in patients with T2DM is 30\%. Drugs commonly used in the treatment of T2DM such as peroxisome proliferator-activated receptors gamma (PPARγ) agonists show improvement of the cognitive abilities in patients with early stage of dementia, with potential therapeutically relevance. Therefore it is important not only to investigate a link between these diseases, but also to investigate the insulin signaling pathway in the brain of AD patients. In order to investigate this complex issue in more details and demonstrate additional links between T2DM and AD, the present study used several basic biological methods to clarify the question: "Is impaired insulin signaling pathway within the brain crucial for the development of AD?" from several points of view. The methods used in this work have been i) an analysis of single nucleotide (SNP) polymorphism of the insulin-degrading enzyme gene (IDE) in relation to risk of AD and / or of T2DM, ii) post-mortem histochemical studies of brain tissue of patients with only AD, with AD combined with T2DM and with only T2DM compared with an age-matched control group, and iii.) investigations of neurochemical pathways and gene/protein expression changes of a human cell culture as a consequences of amyloid β (Aβ) treatment. After analysis of the IDE SNP polymorphism in the selected VITA (Vienna Trans Danube Aging) cohort disease-specific effects were discovered. The upstream polymorphism (IDE2) was found to influence AD risk in a protective manner, while the downstream polymorphism (IDE7) modified the T2DM risk. Based on the SNP results, the presented study delineate the model that IDE promoter and 3‟ untranslated region/downstream variation can have different effects on IDE expression, maybe a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. Furthermore, the human post-mortem studies could show that both AD as well as T2DM patients had a significantly lower density of the insulin receptor (IR) in the hippocampus, whereas a significantly increased density of inactive phosphorylated PPARγ has been found and this persisted even in patients with both diseases. Summarizing the histological study, it was possible to reveal common histological features of AD and T2DM, but no direct connection between the two diseases. Although AD is nowadays not only characterized by amyloid-containing plaque deposits and by the hyperphosphorylation of tau protein, the excessive Aβ42 presence in the brains of AD patients is still playing a key role. Up to date it is still not entirely clear which physical form of Aβ42 is responsible for the development of AD. The present work investigated, what impact has the state of aggregation of Aβ42 on genes and proteins of the insulin signaling pathway and the amyloid cascade. It could be shown that the oligomeric variant enhanced specifically the gene and protein expression of glycogen synthase kinase (GSK) 3β and also the enzyme activity was significantly increased, but has in turn strongly inhibited the IR gene and protein expression. Additionally, the effect of Aβ42 on monoamine oxidase B (MAO-B) was examined. An effect of both aggregated forms of Aβ42 had on enzyme activity was discovered. However, the fibrillar variants led to significantly increased activity of MAO-B while the oligomeric variants inhibited the enzyme activity. Several previous studies have demonstrated the involvement of increased MAO-B activity in AD, but the present work provides for the first time a direct link between the states of aggregation of Aβ42 to enzyme activity. Finally the results of the presented thesis can be summarized to following conclusion: Although AD and T2DM sharing some degrees of common features, still there is a lack of direct association, and therefore the diseases must be considered more independent rather than linked. But the impaired cerebral insulin signaling pathway seems to be another manifested hallmark of AD.}, subject = {Alzheimer-Krankheit}, language = {en} } @phdthesis{Kehlenbrink2010, author = {Kehlenbrink, Sylvia}, title = {Inhibiting Gluconeogenesis (GNG) Prevents the Effects of Free Fatty Acids (FFA) on Hepatic Glucose Effectiveness (GE)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48389}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Free fatty acids (FFA) modulate the effectiveness of glucose to suppress endogenous glucose production (EGP), and increased FFA levels contribute importantly to the loss of glucose effectiveness in type 2 diabetes mellitus (T2DM). Elevating FFA levels in nondiabetic (ND) subjects for at least 6h both increases gluconeogenesis (GNG) and impairs glucose effectiveness. Therefore, we wished to define the extent to which an increase in GNG is responsible for the loss of glucose effectiveness and whether EGP can be inhibited in the presence of elevated plasma FFA by inhibiting GNG with ethanol. To determine the effect of inhibiting GNG on glucose effectiveness, EGP ([3-3H]-glucose) was measured during three separate 7h normoglycemic/hyperglycemic pancreatic clamp studies (somatostatin; basal glucagon/GH/insulin replacement) in n=7 ND subjects (1F/6M; age=45±5 yr; BMI=27.6±3.0 kg/m2). Following an initial 210 min interval of euglycemia (5 mmol/l), blood glucose levels were raised to hyperglycemic levels (10 mmol/l) from t=210-420 min. The first pancreatic clamp study was a baseline study with saline infusions (Lip-/Et-). Lipid emulsion (Liposyn 20\%) was infused throughout the second and third study types (Lip+ and Lip+/Et+) to increase FFA to T2DM levels (~ 500 mmol/l). In addition to Liposyn, ethanol (Et) was infused during hyperglycemia in the third study type (Lip+/Et+), using a pharmacokinetic algorithm to attain GNG-inhibiting ethanol levels of 80 mg/dl within 20 min. Under baseline conditions, hyperglycemia suppressed EGP by 61\%. After raising plasma FFA to T2DM levels, suppression of EGP by hyperglycemia was impaired in Lip+ (34\% decrease). During the Lip+/Et+ co-infusion studies the infusion of ethanol enhanced suppression of EGP by hyperglycemia (65.8\% decrease, P=0.004 vs. Lip+) and thus restored glucose effectiveness (P=0.6 vs. Lip-/Et-). Thus, our results confirm the striking effects of elevated plasma FFA to impair glucose effectiveness and suggest that increased GNG contributes importantly to this loss of regulation. Inhibiting GNG could be an effective means of lowering EGP and improving glucose effectiveness in T2DM.}, subject = {Gluconeogenese}, language = {en} }