@article{KanalKeiberEcketal.2014, author = {Kanal, Florian and Keiber, Sabine and Eck, Reiner and Brixner, Tobias}, title = {100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy}, doi = {10.1364/OE.22.016965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112853}, year = {2014}, abstract = {Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.}, language = {en} } @phdthesis{Langhojer2009, author = {Langhojer, Florian}, title = {New techniques in liquid-phase ultrafast spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39337}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Contents List of Publications 1 Introduction 2 Basic concepts and instrumentation 2.1 Mathematical description of femtosecond laser pulses 2.2 Optical quantities and measurements 2.2.1 Intensity 2.2.2 Absorbance and Beer-Lambert law 2.3 Laser system 2.4 General software framework for scientific data acquisition and simulation 2.4.1 Core components 2.4.2 Program for executing a single measurement sequence 2.4.3 Scan program 2.4.4 Evolutionary algorithm optimization program 2.4.5 Applications of the software framework 2.5 Summary 3 Generation of ultrabroadband femtosecond pulses in the visible 3.1 Nonlinear optics 3.1.1 Nonlinear polarization and frequency conversion 3.1.2 Phase matching 3.2 Optical parametric amplification 3.3 Noncollinear optical parametric amplifier 3.4 Considerations and experimental design of NOPA 3.4.1 Options for broadening the NOPA bandwidth 3.4.2 Experimental setup 3.5 NOPA pulse characterization 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Compression and shaping methods for NOPA pulses 3.6.1 Grating compressor 3.6.2 Prism compressor 3.6.3 Chirped mirrors 3.6.4 Detuned zero dispersion compressor 3.6.5 Deformable mirror pulse shaper 3.6.6 Liquid crystal pulse shaper 3.7 Liquid crystal pulse shaper 3.7.1 Femtosecond pulse shapers 3.7.2 Experimental design and parameters 3.7.3 Optical setup of the LC pulse shaper 3.7.4 Calibrations of the pulse shaper 3.8 Adaptive pulse compression 3.8.1 Closed loop pulse compression 3.8.2 Open loop pulse compression 3.9 Conclusions 4 Coherent optical two-dimensional spectroscopy 4.1 Introduction 4.2 Theory of third order nonlinear optical spectroscopies 4.2.1 Response function, electric fields, and signal field 4.2.2 Signal detection with spectral interferometry 4.2.3 Evaluation of two-dimensional spectra and phasing 4.2.4 Selection and classification of terms in induced nonlinear polarization 4.2.5 Oscillatory character of measured signal 4.3 Previous experimental implementations 4.4 Inherently phase-stable setup using conventional optics only 4.4.1 Manipulation of pulse pairs as a basis for stability 4.4.2 Experimental setup 4.4.3 Measurement procedure 4.4.4 Data evaluation 4.5 First experimental results 4.5.1 Demonstration of phase stability 4.5.2 2D spectrum of Nile Blue at room temperature 4.6 Summary and outlook 5 Product accumulation for ultrasensitive femtochemistry 5.1 The problem of sensitivity in femtochemistry 5.2 Accumulation for increased sensitivity 5.2.1 Comparison of conventional and accumulative sensitivity 5.2.2 Schematics and illustrative example 5.3 Experimental setup 5.4 Calibration and modeling of accumulation 5.5 Experiments on indocyanine green 5.5.1 Calibration of the setup 5.5.2 Chirped pulse excitation 5.5.3 Adaptive pulse shaping 5.6 Conclusions 6 Ultrafast photoconversion of the green fluorescent protein 6.1 Green fluorescent protein 6.2 Experimental setup for photoconversion of GFP 6.3 Calibration of the setup for GFP 6.3.1 Model for concentration dynamics of involved GFP species 6.3.2 Estimate of sensitivity 6.4 Excitation power study 6.5 Time-resolved two-color experiment 6.6 Time-delayed unshaped 400 nm - shaped 800 nm pulse excitation 6.6.1 Inducing photoconversion with chirped pulses 6.6.2 Photoconversion using third order phase pulses 6.7 Conclusions 7 Applications of the accumulative method to chiral systems 7.1 Introduction 7.2 Chiral asymmetric photochemistry 7.2.1 Continuous-wave circularly polarized light 7.2.2 Controlled asymmetric photochemistry using femtosecond laser pulses 7.3 Sensitive and fast polarimeter 7.3.1 Polarimeter setup 7.3.2 Detected signal I(t) 7.3.3 Angular amplification 7.3.4 Performance of the polarimeter 7.4 Molecular systems and mechanisms for enantioselective quantum control 7.4.1 Binaphthalene derivatives 7.4.2 Photochemical helicene formation 7.4.3 Spiropyran/merocyanine chiroptical molecular switches 7.5 Summary 8 Summary Zusammenfassung Bibliography Acknowledgements}, subject = {Ultrakurzzeitspektroskopie}, language = {en} }