@phdthesis{Janz2024, author = {Janz, Anna}, title = {Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA)}, doi = {10.25972/OPUS-24096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Massih2024, author = {Massih, Bita}, title = {Human stem cell-based models to analyze the pathophysiology of motor neuron diseases}, publisher = {Frontiers in Cell and Developmental Biology}, doi = {10.25972/OPUS-34637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Endres2024, author = {Endres, Leo Maximilian}, title = {Development of multicellular \(in\) \(vitro\) models of the meningeal blood-CSF barrier to study \(Neisseria\) \(meningitidis\) infection}, doi = {10.25972/OPUS-34621}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346216}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Neisseria meningitidis (the meningococcus) is one of the major causes of bacterial meningitis, a life-threatening inflammation of the meninges. Traversal of the meningeal blood-cerebrospinal fluid barrier (mBCSFB), which is composed of highly specialized brain endothelial cells (BECs), and subsequent interaction with leptomeningeal cells (LMCs) are critical for disease progression. Due to the human-exclusive tropism of N. meningitidis, research on this complex host-pathogen interaction is mostly limited to in vitro studies. Previous studies have primarily used peripheral or immortalized BECs alone, which do not retain relevant barrier phenotypes in culture. To study meningococcal interaction with the mBCSFB in a physiologically more accurate context, BEC-LMC co-culture models were developed in this project using BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in combination with LMCs derived from tumor biopsies. Distinct BEC and LMC layers as well as characteristic expression of cellular markers were observed using transmission electron microscopy (TEM) and immunofluorescence staining. Clear junctional expression of brain endothelial tight and adherens junction proteins was detected in the iBEC layer. LMC co-culture increased iBEC barrier tightness and stability over a period of seven days, as determined by sodium fluorescein (NaF) permeability and transendothelial electrical resistance (TEER). Infection experiments demonstrated comparable meningococcal adhesion and invasion of the BEC layer in all models tested, consistent with previously published data. While only few bacteria crossed the iBEC-LMC barrier initially, transmigration rates increased substantially over 24 hours, despite constant high TEER. After 24 hours of infection, deterioration of the barrier properties was observed including loss of TEER and altered expression of tight and adherens junction components. Reduced mRNA levels of ZO-1, claudin-5, and VE-cadherin were detected in BECs from all models. qPCR and siRNA knockdown data suggested that transcriptional downregulation of these genes was potentially but not solely mediated by Snail1. Immunofluorescence staining showed reduced junctional coverage of occludin, indicating N. meningitidis-induced post-transcriptional modulation of this protein, as previous studies have suggested. Together, these results suggest a potential combination of transcellular and paracellular meningococcal traversal of the mBCSFB, with the more accessible paracellular route becoming available upon barrier disruption after prolonged N. meningitidis infection. Finally, N. meningitidis induced cellular expression of pro-inflammatory cytokines and chemokines such as IL-8 in all mBCSFB models. Overall, the work described in this thesis highlights the usefulness of advanced in vitro models of the mBCSFB that mimic native physiology and exhibit relevant barrier properties to study infection with meningeal pathogens such as N. meningitidis.}, subject = {Bakterielle Hirnhautentz{\"u}ndung}, language = {en} } @phdthesis{Vitale2023, author = {Vitale, Maria Rosaria}, title = {Excitatory/inhibitory balance in iPSC-derived glutamatergic/GABAergic neuronal networks: differential Cadherin-13 genotype effects}, doi = {10.25972/OPUS-28789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {While the healthy brain works through balanced synaptic communication between glutamatergic and GABAergic neurons to coordinate excitation (E) and inhibition (I), disruption of E/I balance interferes with synaptic communication, information processing, and ultimately cognition. Multiple line of evidence indicates that E/I imbalance represents the pathophysiological basis of a wide spectrum of mental disorders. Genetic screening approaches have identified Cadherin-13 (CDH13). as a risk gene across neurodevelopmental and mental disorders. CDH13 regulates several cellular and synaptic processes in brain development and neuronal plasticity in adulthood. In addition to other functions, it is specifically localized at inhibitory synapses of parvalbumin- and somatostatin-expressing GABAergic neurons. In support of CDH13's function in moderating E/I balance, electrophysiological recordings of hippocampal slices in a CDH13-deficient mouse model revealed an increase in basal inhibitory but not excitatory synaptic transmission. Moreover, the search for genetic variants impacting functional expression of the CDH13 gene identified SNP (single nucleotide polymorphism)) rs2199430 in intron 1 to be associated with differential mRNA concentrations in human post-mortem brain across the three genotypes CDH13G/G, CDH13A/G and CDH13A/A . This work therefore aimed to further validate these findings in a complementary human model by using induced pluripotent stem cells (iPSCs). The application of human iPSCs in research has replaced the use of embryonic cells, resolving the ethical conflict of destructive usage of human embryos. Investigating CDH13's mode of action in inhibitory synapses was predicted to facilitate mechanistic insight into the effects of CDH13 gene variants on E/I network activity, which can then be targeted to reinstate balance. Genome-wide association studies have identified rare copy number variants (CNVs) resulting in a deletion (or duplication) of CDH13. To reduce genetic background variance, a set of isogenic iPSC lines with a gene dose-dependent deficiency of CDH13 (CDH13-/- and CDH13+/- ) was generated by using the Clustered Regulatory Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. These CRISPRed iPSCs carrying a single or two allele(s) with CDH13 inactivation facilitate investigation of CDH13 function in cellular processes, at inhibitory synapses and in neuronal network activity. In addition, iPSCs carrying allelic SNP rs2199430 variants were used to study the effects of common genetic variation of CDH13. These cell lines were differentiated into pure glutamatergic and GABAergic neurons and co-cultured to generate neuronal networks allowing its activity to be measured and correlated with electrophysiological signatures of differential CDH13 genotypes. The work towards assessment of neuronal network activity of the iPSC lines was subdivided into three major steps: first, generating rtTA/Ngn2 and rtTA/Ascl1-positive iPSCs via a lentivirus-mediated approach; second, differentiating pure glutamatergic and GABAergic neurons from the genetically transduced iPSCs and co-culturing of pure glutamatergic and GABAergic neurons in a pre-established ratio (65:35) by direct differentiation upon supplementation with doxycycline and forskolin on a microelectrode array (MEA) chip; and, finally, recording of neuronal network activity of iPSC lines after 49 days in vitro, followed by extraction and analyses of multiple MEA parameters. x Based on the MEA parameters, it was confirmed that complete CDH13 knockout as well as heterozygous deficiency influence E/I balance by increasing inhibition. It was further revealed that common SNP variation alters the signature of neuronal network activity. Specifically, CDH13 deficiency resulted in a significant reduction in network burst duration (NBD), reduced number of detected spikes within a network burst and reduction in network burst rate (NBR) compared to the control (CDH13G/G). CDH13A/G and CDH13A/A showed similarities with the CRISPRed CDH13-deficient networks by showing a significant reduction in the NBD and a reduced number of detected spikes within a network compared to CDH13G/G. Strikingly. there was a significant increase in the NBR of the CDH13A/G and CDH13A/A compared to CDH13G/G networks. CDH13A/G networks exhibited significant differences in both parameters. At the cellular level, this indicates that signalling pathways which determine the length and frequency of network bursts differ among allelic variants of SNP rs2199430, thus confirming functional relevance of this intronic SNP. In summary, CDH13-deficient isogenic iPSC lines were generated using CRISPR/Cas9, iPSCs were genetically transduced via a lentivirus approach, direct differentiation of glutamatergic/GABAergic neurons derived from transduced iPSCs were used to establish a scalable co-culture system, and network activity was recorded by MEA using pre-established parameters to extract and analyze activity information. The results indicate that iPSC-derived neuronal networks following CRISPR/Cas9-facilitated CDH13 inactivation, as well as networks with allelic SNP variants of CDH13, moderate E/I balance, thus advancing understanding of CDH13 function at inhibitory synapses and elucidating the effects of rare and common CDH13 gene variation.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Berger2023, author = {Berger, Constantin}, title = {Influence of the pancreatic extracellular matrix on pancreatic differentiation of human induced pluripotent stem cells and establishment of 3D organ models}, doi = {10.25972/OPUS-24126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241268}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Der Diabetes mellitus bezeichnet eine bislang unheilbare, metabolische Erkrankung, die mit schwerwiegenden Folgeerkrankungen einhergeht. Unter den potentiellen Strategien zur Heilung von Diabetes mellitus stellt die in vitro Generierung adulter β-Zellen des endokrinen Pankreas aus humanen induziert pluripotenten Stammzellen (hiPS) einen vielversprechenden Ansatz dar. Zwar erm{\"o}glichen bisherige Protokolle die Herstellung von Zellen mit einem β-Zell-{\"a}hnlichen Charakter, jedoch zeigen diese eine zun{\"a}chst eingeschr{\"a}nkte Funktion, die sich erst im Verlauf einer vollst{\"a}ndigen, durch Transplantation induzierten, Reifung der Zellen, normalisiert. Vorangegangene Studien zeigen, dass sich die Extrazellularmatrix (EZM) von Geweben positiv auf das {\"U}berleben und die Funktion adulter, isolierter Langerhans-Inseln des Pankreas auswirkt. Vor diesem Hintergrund stellt sich die Frage, ob Einfl{\"u}sse der organspezifischen EZM die finale Reifung in vitro hergestellter β-Zellen herbeif{\"u}hren k{\"o}nnen. Um diese Hypothese zu testen, wurde im Rahmen der vorliegenden Studie die Wirkung der pankreatischen EZM auf die in vitro Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht sowie die Eignung der pankreatischen EZM zur Etablierung eines Organmodells des endokrinen Pankreas erprobt. Hierzu wurde zun{\"a}chst eine pankreasspezifische EZM-Tr{\"a}gerstruktur (PanMa) durch Dezellularisierung von Pankreaten des Schweins mittels Natriumdesoxycholat hergestellt. Die generierte PanMa wurde anhand (immun-) histologischer F{\"a}rbungen, Rasterelektronen-mikroskopie, Feststellung des DNA-Gehalts sowie durch Versuche zur Perfusion und Wiederbesiedelung mit Endothelzellen eingehend charakterisiert. Zudem wurde auf Basis der ermittelten Daten ein Bewertungssystem (PancScore) zur standardisierten Herstellung der PanMa entwickelt. Als N{\"a}chstes wurde untersucht, ob die PanMa {\"u}ber gewebespezifische EZM-Merkmale verf{\"u}gt. Zu diesem Zweck wurden biophysikalische und strukturelle Eigenschaften wie Festigkeit, Porosit{\"a}t und Hygroskopie mittels rheologischer Messungen sowie Versuchen zur Teilchendiffusion und zum Wasserbindungsverhalten bestimmt und mit azellul{\"a}ren EZMs des D{\"u}nndarms (SISser) und der Lunge (LungMa) verglichen. Nach der eingehenden Analyse der PanMa wurde deren Effekt auf die Eigenschaften von Stammzellen sowie auf fr{\"u}he Stadien der Stammzellentwicklung untersucht. Hierzu wurde die PanMa als Tr{\"a}gerstruktur w{\"a}hrend der Erhaltung sowie der spontanen Differenzierung von hiPS verwendet und der Einfluss der PanMa anhand von Genexpressionsanalysen und immunhistochemischer F{\"a}rbungen analysiert. In einem n{\"a}chsten Schritt wurde die Wirkung der PanMa auf die Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht. Hierf{\"u}r wurde die PanMa zum einen in fl{\"u}ssiger Form als Mediumzusatz sowie als solide Tr{\"a}gerstruktur w{\"a}hrend der Differenzierung von hiPS zu hormonexprimierenden Zellen (Rezania et al. 2012; Rezania et al. 2014) oder maturierenden β-Zellen verwendet (Rezania et al. 2014). Der Effekt der PanMa wurde anhand von Genexpressions-analysen, immunhistochemischer F{\"a}rbungen und Analysen zur Glukose-abh{\"a}ngigen Insulinsekretion untersucht. In einem letzten Teil der Studie wurde die Eignung der PanMa zur verl{\"a}ngerten Kultivierung von hiPS-abgeleiteten endokrinen Zellen des Pankreas im Hinblick auf die Etablierung eines Organmodells des endokrinen Pankreas getestet. Hierzu wurde die PanMa zu einem Hydrogel weiterverarbeitet, welches zur Einkapselung und Kultivierung von hiPS-abgeleiteten hormonexprimierenden Zellen eingesetzt wurde. Um die Auswirkungen der Hydrogel-Kultur nachzuvollziehen, wurden die kultivierten Zellen mittels Genexpression, immun-histochemischer F{\"a}rbungen und Analysen zur Glukose-abh{\"a}ngigen Insulinsekretion untersucht. Mittels Dezellularisierung porziner Pankreaten konnte eine zellfreie, pankreasspezifische EZM-Tr{\"a}gerstruktur mit geringen Restbest{\"a}nden an DNA sowie einer weitgehend erhaltenen Mikro- und Ultrastruktur mit typischen EZM-Komponenten wie Kollagen I, III und IV hergestellt werden. Im Rahmen der Besiedelung arterieller Gef{\"a}ße mit humanen Endothelzellen wurde die Zellkompatibilit{\"a}t der hergestellten PanMa sowie eine weitgehende Unversehrtheit der Gef{\"a}ßstrukturen nachgewiesen. Verglichen zu SISser und LungMa zeichnete sich die PanMa als eine relativ weiche, stark wasserbindende, faserbasierte Struktur aus. Weiterhin konnten Hinweise f{\"u}r einen Effekt der PanMa auf den Stammzellcharakter und die fr{\"u}he Entwicklung von hiPS beobachtet werden. Hierbei f{\"u}hrte die Erhaltung von hiPS auf der PanMa zu einer leicht ver{\"a}nderten Expression von Genen des Kernpluripotenznetzwerks sowie zu einem reduziertem NANOG-Proteinsignal. Einhergehend mit diesen Beobachtungen zeigten hiPS w{\"a}hrend spontaner Differenzierung auf der PanMa eine verst{\"a}rkte endodermale Entwicklung. Im Verlauf der pankreatischen Differenzierung f{\"u}hrte die Kultivierung auf der PanMa zu einer signifikant verringerten Expression von Glukagon und Somatostatin, w{\"a}hrend die Expression von Insulin unver{\"a}ndert blieb, was auf eine Verminderung endokriner α- und δ-Zellen hinweist. Diese Ver{\"a}nderung {\"a}ußerte sich jedoch nicht in einer verbesserten Glukose-abh{\"a}ngigen Insulinsekretion der generierten hormonexprimierenden Zellen. Unter Anwendung der PanMa als Hydrogel konnten hormonexprimierenden Zellen {\"u}ber einen verl{\"a}ngerten Zeitraum kultiviert werden. Nach 21 Tagen in Kultur zeigten die eingekapselten hormonexprimierenden Zellen eine unver{\"a}ndert hohe Viabilit{\"a}t, wiesen allerdings bereits eine erste ver{\"a}nderte Zellanordnung sowie eine leicht verminderte Glukose-abh{\"a}ngige Insulinsekretion auf. Zusammengefasst konnte in dieser Studie ein biologischer Effekt gewebespezifischer EZM-Merkmale auf die Differenzierung von hiPS nachgewiesen werden. Dar{\"u}ber hinaus weisen die Daten auf eine relevante Funktion der EZM im Rahmen der endokrinen Spezifizierung von hiPS w{\"a}hrend der pankreatischen Differenzierung hin. Diese Beobachtungen verdeutlichen die eminente Rolle der EZM in der Herstellung von funktionalen hiPS-abgeleiteten Zellen und pl{\"a}dieren f{\"u}r eine st{\"a}rkere Einbindung organspezifischer EZMs im Bereich des Tissue Engineering und der klinischen Translation in der Regenerativen Medizin.}, subject = {Bauchspeicheldr{\"u}se}, language = {en} } @phdthesis{Klein2021, author = {Klein, Thomas}, title = {Establishing an in vitro disease model for Fabry Disease using patient specific induced pluripotent stem cell-derived sensory neurons}, doi = {10.25972/OPUS-19970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (GLA), leading to intracellular accumulations of globotriaosylceramide (Gb3). Acral burning pain, which can be triggered by heat, fever or physical activity is an early hallmark of FD and greatly reduces patients' quality of life. The pathophysiology of FD pain is unknown and research is hindered by the limited in vivo availability of suitable human biomaterial. To overcome this obstacle, we generated induced pluripotent stem cells (iPSC) from one female and two male patients with a differing pain phenotype, and developed a refined differentiation protocol for sensory neurons to increase reliability and survival of these neurons, serving as an in vitro disease model. Neurons were characterized for the correct neuronal subtype using immunocytochemistry, gene expression analysis, and for their functionality using electrophysiological measurements. iPSC and sensory neurons from the male patients showed Gb3 accumulations mimicking the disease phenotype, whereas no Gb3 depositions were detected in sensory neurons derived from the female cell line, likely caused by a skewed X-chromosomal inactivation in favor of healthy GLA. Using super-resolution imaging techniques we showed that Gb3 is localized in neuronal lysosomes of male patients and in a first experiment using dSTORM microscopy we were able to visualize the neuronal membrane in great detail. To test our disease model, we treated the neurons with enzyme replacement therapy (ERT) and analyzed its effect on the cellular Gb3 load, which was reduced in the male FD-lines, compared to non-treated cells. We also identified time-dependent differences of Gb3 accumulations, of which some seemed to be resistant to ERT. We also used confocal Ca2+ imaging to investigate spontaneous neuronal network activity, but analysis of the dataset proofed to be difficult, nonetheless showing a high potential for further investigations. We revealed that neurons from a patient with pain pain are more easily excitable, compared to cells from a patient without pain and a healthy control. We provide evidence for the potential of patient-specific iPSC to generate a neuronal in vitro disease model, showing the typical molecular FD phenotype, responding to treatment, and pointing towards underlying electrophysiological mechanisms causing different pain phenotypes. Our sensory neurons are suitable for state-of-the-art microscopy techniques, opening new possibilities for an in-depth analysis of cellular changes, caused by pathological Gb3 accumulations. Taken together, our system can easily be used to investigate the effect of the different mutations of GLA on a functional and a molecular level in affected neurons.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Jansch2021, author = {Jansch, Charline}, title = {Effects of SLC2A3 copy number variants on neurodevelopment and glucose metabolism in ADHD patient-specific neurons}, doi = {10.25972/OPUS-21620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216201}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), represent a burden which deeply impair the patient's life. Neurobiological research has therefore increasingly focused on the examination of brain neurotransmitter systems, such as the serotonin (5-HT) system, since a dysfunction has been repeatedly implicated in the pathology of these diseases. However, investigation of functional human neurons in vitro has been restricted by technical limitations for a long time until the discovery of human induced pluripotent stem cells (iPSCs) revolutionized the field of experimental disease models. Since the pathogenesis of neuropsychiatric disorders involves a complex genetic component, genome-wide association studies (GWAS) revealed numerous risk genes that are associated with an increased risk for ADHD. For instance, the novel ADHD candidate gene SLC2A3 which encodes the glucose transporter-3 (GLUT3), facilitates the transport of glucose across plasma membranes and is essential for the high energy demand of several cell types, such as stem cells and neurons. Specifically, copy number variants (CNVs) of SLC2A3 might therefore impact cerebral glucose metabolism as well as the assembly of synaptic proteins in human neurons which might contribute to the pathogenesis of ADHD. We hypothesized that an altered SLC2A3 gene dosage in human neurons can exert diverse protective or detrimental effects on neurodevelopmental processes as well as the coping of glucometabolic stress events, such as hypo- and hyperglycaemic conditions. The generation of specific iPSC lines from ADHD patients and healthy probands served as basis to efficiently differentiate stem cells into 5-HT specific neurons. Using this neuronal culture, we were able to examine effects of SLC2A3 CNVs on the basal expression of SCL2A3 and GLUT3 in human neurons. Furthermore, the focus was on potentially altered coping of the cells with glucose deprivation and the treatment with specific high- and low glycaemic media. High-resolution fluorescence imaging in combination with electrophysiological and molecular biological techniques showed that: 1) The generated human iPSCs are fully reprogrammed human stem cells showing typical characteristics of embryonic stem cell-like morphology, growth behaviour, the ability to differentiate into different cell types of the human body and the expression of pluripotency-specific markers. 2) The neuronal subtype derived from our stem cells display typical characteristics of 5-HT specific median and dorsal neurons and forms synapses reflected by the expression of pre- and postsynaptic proteins. 3) Even if SLC2A3 CNVs influence SLC2A3 and GLUT3 basal expression, no significant alterations in gene and protein expression caused by hyper- and hypoglycaemic conditions, nor in the assembly of proteins associated with synapse formation could be observed in human iPSC-derived neurons.}, subject = {Stammzelle}, language = {en} } @phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} }