@phdthesis{Gerhard2014, author = {Gerhard, Felicitas Irene Veronika}, title = {Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Lochner2011, author = {Lochner, Florian}, title = {Epitaxial growth and characterization of NiMnSb layers for novel spintronic devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72276}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Dissertation wurde das epitaktische Wachstum und die Charakterisierung des halb-metallischen Ferromagneten NiMnSb vorgestellt. NiMnSb kristallisiert in der C1b Kristallstruktur, welche {\"a}hnlich der Zinkblendestruktur von h{\"a}ufig verwendeten III-V Halbleitern ist. Eine besondere Eigenschaft von NiMnSb ist die theoretische 100\% Spin-polarisation an der Fermikante, die es zu einem perfekten Kandidaten f{\"u}r Spintronikexperimente macht. Eine weitere große Rolle f{\"u}r diese Arbeit spielten die magnetischen Eigenschaften von NiMnSb, insbesondere die niedrige magnetische D{\"a}mpfung der abgeschiedenen Schichten. Alle gewachsenen Schichten wurden mit der MBE-Technik hergestellt. Die Schichtstapel f{\"u}r alle unterschiedlichen Experimente und Anwendungen wurden auf InP Substrate in (001) oder (111)B Orientierung abgeschieden. Vor der NiMnSb Schicht wurde eine undotierte (In,Ga)As Pufferschicht gewachsen. F{\"u}r einige Proben auf InP(111)B wurde zus{\"a}tzlich eine Si-dotierte (In,Ga)As-Schicht auf die undotierte (In,Ga)As-Schicht gewachsen. Die Dotierungskonzentration der n-dotierenten Schicht wurde per ETCH-CV bestimmt. Alle Schichten wurden auf strukturelle Eigenschaften und die NiMnSb-Schichten zus{\"a}tzlich auf magnetische Eigenschaften untersucht. F{\"u}r die strukturellen Untersuchungen wurde die in-situ Technik RHEED und das ex-situ Werkzeug HRXRD verwendet. Auf beiden Orientierungen zeigten die RHEED-Beobachtungen eine gute Qualit{\"a}t der gewachsenen Puffer- und halb-metallischen Ferromagnetschichten. Dieses Ergebnis wurde durch die HRXRD-Messung best{\"a}rkt. Es konnte die vertikale Gitterkonstante bestimmt werden. Der erhaltene Wert von NiMnSb auf InP(001) a(NiMnSb_vertikal) = 5.925 {\AA} ist in guter {\"U}bereinstimmung mit dem Literaturwert a(NiMnSb_Lit) = 5.903 {\AA}[Cas55]. F{\"u}r NiMnSb auf InP(111)B wurde eine vertikale Gitterkonstante von a(NiMnSb_vertikal) = 6.017 {\AA} bestimmt. Die horizontale Gitterkonstante des Puffers und des halb-metallischen Ferromagneten konnte in guter {\"U}bereinstimmung mit der Substratgitterkonstante bestimmt werden. Allerdings ist dieses Ergebnis ausschließlich bis zu einer Schichtdicke von ≈40nm f{\"u}r NiMnSb g{\"u}ltig. Um diese maximale Schichtdicke zu erh{\"o}hen, wurden NiMnSb auf InP(001) Substrate gewachsen und mit einer Ti/Au-Schicht als Schutz versehen. Mit diesen Proben wurden reziproke Gitterkarten des (533) Reflex mit GIXRD am Synchrotron BW2 des HASYLAB gemessen [Kum07]. Es hat sich gezeigt, dass sich die kritische Schichtdicke mehr als verdopppeln l{\"a}sst, wenn eine Ti/Au- Schicht direkt nach dem Wachstum von NiMnSb abgeschieden wird, ohne das Ultrahochvakuum (UHV) zu verlassen. Die magnetischen Eigenschaften wurden mit FMR Experimenten und SQUID bestimmt. Der gemessene magnetische D{\"a}mpfungsparameter α einer 40nm dicken NiMnSb Schicht auf InP(001) wurde zu 3.19e-3 entlang [1-10] bestimmt. Die resultierende Linienbreite von unseren Schichten auf InP(001) ist mehr als 4.88 mal kleiner als bei [Hei04] gemessen. Ein weiteres Ergebnis ist die Richtungsabh{\"a}ngigkeit der D{\"a}mpfung. Es wurde gemessen, dass die D{\"a}mpfung sich um mehr als 42\% {\"a}ndert, wenn das angelegte Feld um 45° von [1-10] nach [100] gedreht wird. Mit SQUID messten wir die S{\"a}ttigungsmagnetisierung von einer 40nm dicken NiMnSb-Schicht zu 4µB. NiMnSb-Schichten auf InP(111)B Substrate wurden ebenfalls mit FMR untersucht, mit einem {\"u}berraschenden Ergebnis. Diese Schichten zeigten nicht nur eine Abnahme im Anisotropiefeld mit ansteigender Schichtdicke, sondern auch ein uniaxiales Anisotropieverhalten. Dieses Verhalten kann mit Defekten in diesen Proben erkl{\"a}rt werden. Mit einem Rasterkraftmikroskop (AFM) wurden dreieckige Defekte gemessen. Diese Defekte haben ihren Ursprung in der Pufferschicht und beeinflussen die magnetischen Eigenschaften. Ein weiterer Teil dieser Arbeit widmete sich dem Verhalten von NiMnSb bei Temperaturen um die 80K. In unserer Probe konnte ein Phasen{\"u}bergang in den Messdaten des normalen Hall Koeffizienten, anomalen Hall-Term und Leitungswiderstand nicht beobachtet werden. Der letzte Teil dieser Arbeit behandelt verschiedene Spintronikanwendungen, welche aus unseren NiMnSb-Schichten gebaut wurden. In einer ersten Anwendung agiert die Magnetisierung auf einen Strom I. Die so genannte GMR-Anwendung besteht aus InP:S(001)- 180nm undotierten (In,Ga)As - 40nm NiMnSb - 10nm Cu - 6nm NiFe - 10nm Ru in CPP Geomtrie . Wir erhielten ein MR-Verh{\"a}ltnis von 3.4\%. In einer zweiten Anwendung agiert der Strom I auf die Magnetisierung und nutzt dabei das Ph{\"a}nomen des Spin-Drehmomentes aus. Dieser so genannte Spin Torque Oscillator (STO) emittiert Frequenzen im GHz Bereich (13.94GHz - 14.1GHz). Die letzte hergestellte Anwendung basiert auf dem magnetischen Wirbelph{\"a}nomen. F{\"u}r das Umschalten der Kernpolarit{\"a}t sind die gyrotropischen Frequenzen f + = 254MHz, f - = 217MHz und ein totales, statisches magnetisches Feld von nur mµ0H = 65mT n{\"o}tig. Die Umkehreffizienz wurde besser als 99\% bestimmt.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Riegler2011, author = {Riegler, Andreas}, title = {Ferromagnetic resonance study of the Half-Heusler alloy NiMnSb : The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66305}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Seit der Entdeckung des Spin-Torque durch Berger und Slonczewsky im Jahre 1996 gewann dieser Effekt immer mehr an Einfluss in dem Gebiet der Spintronic. Dies geschah besonders durch den Einfluss des Spin-Torque auf die Informationsspeicher und Kommunikationstechnologien (z.B. die M{\"o}glichkeit einen magnetischen Zustand eines Speicherelementes mit Hilfe von Strom und nicht wie bisher durch das Anlegen eines magnetischen Feldes zu {\"a}ndern, oder die Realisierung eines hochfrequenten Spin-Torque-Oszillator (STO). Aufgrund des direkten Zusammenhangs zwischen der D{\"a}mpfung in Ferromagneten und der kritischen Stromdichte, die n{\"o}tig ist um ein Spin-Ventil zu schalten oder ein Pr{\"a}zidieren der Magnetisierung zu induzieren, wurde die Forschung an Ferromagneten mit geringer D{\"a}mpfung zunehmend forciert. In dieser Arbeit werden Studien der ferromagnetischen Resonanz (FMR) von NiMnSb Schichten und Transportmessungen an NiMnSb basierten Spin-Ventilen pr{\"a}sentiert. Das Halbmetall NiMnSb ist mit einer theoretischen 100\%igen Spinpolarisation pr{\"a}destiniert f{\"u}r die Verwendung in GMR Elementen. Neben der theoretisch vorhergesagten hohen Spinpolarisation zeigen die durchgef{\"u}hrten FMR Messungen einen {\"u}beraus geringen D{\"a}mpfungsfaktor f{\"u}r dieses Material. Dieser liegt in der Gr{\"o}ßenordnung von wenigen 10-3. Somit ist die D{\"a}mpfung in NiMnSb um den Faktor zwei geringer als in Permalloy und gut vergleichbar mit epitaktisch gewachsenen Eisen-Schichten. Neben den guten D{\"a}mpfungseigenschaften zeigen jedoch theoretische Modelle den Verlust der 100\%igen Spinpolarisation durch das Brechen der Translationssymmetrie an Grenzfl{\"a}chen und das Kollabieren der Aufspaltung im Minorit{\"a}ts-Spin-Band. Da ein Wachstum in (111) Richtung diesen Prozess entgegen wirken kann, werden in dieser Arbeit zudem auf (111)(In,Ga)As gewachsene NiMnSb Schichten mittels FMR untersucht. Die Messungen an diesen Proben zeigen, im Vergleich zu (001) orientierten Schichten, eine erh{\"o}hte D{\"a}mpfung. Zudem kann bei diesen Schichten eine schichtdickenabh{\"a}ngige uni-direktionale magnetische Anisotropie gemessen werden. Im Hinblick auf den m{\"o}glichen industriellen Einsatz in Speicherelementen werden {\"u}berdies Messungen an Sub-Mikrometer großen NiMnSb Elementen auf (001) orientierten Substraten pr{\"a}sentiert. Die Elemente wurden mittels Elektronenstrahllithographie hergestellt und mittels FMR vermessen. Auch die so prozessierten Schichten zeigen einen D{\"a}mpfungsfaktor im unteren 10-3 Bereich. Das Auftreten von magnetostatischen Moden in den Messungen ist ein weiterer indirekter Nachweis der hohen Qualit{\"a}t der NiMnSb-Schichten. Im Jahre 2001 wurde von Mizukamie und seinen Kollegen eine dickenabh{\"a}ngige Erh{\"o}hung der Gilbertd{\"a}mpfung bei, mit Metallen bedeckten, Permalloy-Schichten beobachtet. Im Jahr darauf wurde von Tserkovnyak, Brataas und Bauer eine Theorie erarbeitet die dieses Ph{\"a}nomen auf ein Pumpen von Spins aus dem Ferromagneten in die Metalschicht zur{\"u}ckf{\"u}hrt. Aus diesem Grund werden Messungen von NiMnSb Schichten, die mit verschiedenen Metallen und Isolatoren in-situ vor Oxidation gesch{\"u}tzt wurden, pr{\"a}sentiert. Nach diesen materialspezifischen Voruntersuchungen werden auf NiMnSb und Permalloy basierte Pseudo-Spin-Ventile unter Verwendung eines selbst ausrichtenden lithographischen Prozesses hergestellt. Transportmessungen an den Proben zeigen ein GMRVerh{\"a}ltnis von 3,4\% bei Raumtemperatur und fast das doppelte bei tiefen Temperaturen. Diese sind sehr gut vergleichbar mit den besten ver{\"o}ffentlichten GMR-Verh{\"a}ltnissen f{\"u}r Einzelschichtsysteme. {\"U}berdies kann in den Experimenten eine viel versprechend geringe kritische Stromdichte, die n{\"o}tig ist, um die magnetische Orientierung zu {\"a}ndern, gemessen werden. Diese ist vergleichbar mit kritischen Stromdichten aktuellster metallbasierter GMR-Elemente oder auf dem Tunneleffekt basierenden Spin-Ventilen. Das eigentliche Potential der auf NiMnSb basierenden Spin-Ventile wird erst ersichtlich wenn diese als STO zum Emittieren hochfrequenter, durchstimmbarer und schmalbandiger elektromagnetischer Wellen verwendet werden. Auf Heusler basierende STO zeigen einen {\"u}berdurchschnittlich hohen q-Faktor von 4180, sogar im Betrieb ohne extern angelegtes Magnetfeld. Dieser ist um mehr als eine Gr{\"o}ßenordnung h{\"o}her als der h{\"o}chste ver{\"o}ffentliche q-Faktor eines ohne externes Feld arbeitenden STO. W{\"a}hrend die Heusler basierten STO ebenso wie alle anderen STO unter einer geringen Ausgangsleistung leiden, machen die Maßst{\"a}be im Sub-Mikrometer Bereich eine On-Chip Herstellung m{\"o}glich. Somit kann durch ein Parallelschalten von gekoppelten Oszillatoren eine Erh{\"o}hung der Ausgangsleistung erzielt werden.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Bach2006, author = {Bach, Peter}, title = {Growth and characterization of NiMnSb-based heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100\% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth on InP(001), procedures for the substrate preparation, growth of the lattice matched (In,Ga)As buffer layer and of the NiMnSb layer have been developed. The effect of flux-ratios and substrate temperatures on the MBE growth of the buffer as well as of the NiMnSb layer have been investigated and the optimum conditions have been pointed out. NiMnSb grows in the layer-by-layer Frank-van der Merwe growth mode, which can be seen by the intensity oscillations of the RHEED specular spot during growth. RHEED and LEED measurements show a flat surface and a well-defined surface reconstruction. High resolution x-ray measurements support this statement, additionally they show a high crystalline quality. Measurements of the lateral and the vertical lattice constant of NiMnSb films on (001) oriented substrates show that layers above a thickness of 20nm exhibit a pseudomorphic as well as a relaxed part in the same layer. Whereas layers around 40nm show partly relaxed partitions, these partitions are totally relaxed for layers above 100nm. However, even these layers still have a pseudomorphic part. Depth-dependent x-ray diffraction experiments prove that the relaxed part of the samples is always on top of the pseudomorphic part. The formation and propagation of defects in these layers has been investigated by TEM. The defects nucleate early during growth and spread until they form a defect network at a thickness of about 40nm. These defects are not typical misfit dislocations but rather antiphase boundaries which evolve in the Mn/Sb sublattice of the NiMnSb system. Dependent on the thickness of the NiMnSb films different magnetic anisotropies can be found. For layers up to 15nm and above 25nm a clear uniaxial anisotropy can be determined, while the layers with thicknesses in between show a fourfold anisotropy. Notably the easy axis for the thin layers is perpendicular to the easy axis observed for the thick layers. Thin NiMnSb layers show a very good magnetic homogeneity, as can be seen by the very small FMR linewidth of 20Oe at 24GHz. However, the increase of the linewidth with increasing thickness shows that the extrinsic damping gets larger for thicker samples which is a clear indication for magnetic inhomogeneities introduced by crystalline defects. Also, the magnetic moment of thick NiMnSb is reduced compared to the theoretically expected value. If a antiferromagnetic material is deposited on top of the NiMnSb, a clear exchange biasing of the NiMnSb layer can be observed. In a further step the epitaxial layers of the semiconductor ZnTe have been grown on these NiMnSb layers, which enables the fabrication of NiMnSb/ZnTe/NiMnSb TMR structures. These heterostructures are single crystalline and exhibit a low surface and interface roughness as measured by x-ray reflectivity. Magnetic measurements of the hysteresis curves prove that both NiMnSb layers in these heterostructures can switch separately, which is a necessary requirement for TMR applications. If a NiMn antiferromagnet is deposited on top of this structure, the upper NiMnSb layer is exchange biased by the antiferromagnet, while the lower one is left unaffected. Furthermore the growth of NiMnSb on (111) oriented substrates has been investigated. For these experiments, InP substrates with a surface orientation of (111)A and (111)B were used, which were miscut by 1 to 2° from the exact orientation to allow for smoother surfaces during growth. Both the (In, Ga)As buffer as well as the NiMnSb layer show well defined surface reconstructions during growth. X-ray diffraction experiments prove the single crystalline structure of the samples. However, neither for the growth on (111)A nor on (111)B a perfectly smooth surface could be obtained during growth, which can be attributed to the formation of pyramid-like facets evolving as a result of the atomic configuration at the surface. A similar relaxation behavior as NiMnSb layers on (001) oriented InP could not be observed. RHEED and x-ray diffraction measurements show that above a thickness of about 10nm the NiMnSb layer begins to relax, but remnants of pseudomorphic parts could not be found. Magnetic measurements show that the misorientation of the substrate crystal has a strong influence on the magnetic anisotropies of NiMnSb(111) samples. In all cases a uniaxial anisotropy could be observed. The easy axis is always aligned parallel to the direction of the miscut of the substrate.}, subject = {Nickelverbindungen}, language = {en} }