@phdthesis{AlBaidhani2018, author = {Al-Baidhani, Mohammed}, title = {Spectroscopy as a tool to investigate the high energy optical properties of nanostructured magnetically doped topological insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this dissertation the electronic and high-energy optical properties of thin nanoscale films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Magnetic topological insulators are presently of broad interest as the combination of ferromagnetism and spin-orbit coupling in these materials leads to a new topological phase, the quantum anomalous Hall state (QAHS), with dissipation less conduction channels. Determining and controlling the physical properties of these complex materials is therefore desirable for a fundamental understanding of the QAHS and for their possible application in spintronics. EELS can directly probe the electron energy-loss function of a material from which one can obtain the complex dynamic dielectric function by means of the Kramers-Kronig transformation and the Drude-Lindhard model of plasmon oscillations. The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with regards to inelastic background contributions. It is shown that the spectra can be accurately described based on the electron energy-loss function obtained from an independent EELS measurement. This allows for a comprehensive and quantitative analysis of the XPS data, which will facilitate future core-level spectroscopy studies in this class of topological materials. From the EELS data, furthermore, the bulk and surface optical properties were estimated, and compared to ab initio calculations based on density functional theory (DFT) performed in the GW approximation for Sb2Te3. The experimental results show a good agreement with the calculated complex dielectric function and the calculated energy-loss function. The positions of the main plasmon modes reported here are expected to be generally similar in other materials in this class of nanoscale TI films. Hence, the present work introduces EELS as a powerful method to access the high-energy optical properties of TI thin films. Based on the presented results it will be interesting to explore more systematically the effects of stoichiometry, magnetic doping, film thickness and surface morphology on the electron-loss function, potentially leading to a better understanding of the complex interplay of structural, electronic, magnetic and optical properties in MTI nanostructures.}, subject = {Topologischer Isolator}, language = {en} } @article{DauthWiessnerFeyeretal.2014, author = {Dauth, M. and Wiessner, M. and Feyer, V. and Sch{\"o}ll, A. and Puschnig, P. and Reinert, F. and Kuemmel, S.}, title = {Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/10/103005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115180}, pages = {103005}, year = {2014}, abstract = {Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments.}, language = {en} } @article{KasprzakSivalertpornAlbertetal.2013, author = {Kasprzak, J. and Sivalertporn, K. and Albert, F. and Schneider, C. and H{\"o}fling, S. and Kamp, M. and Forchel, A. and Muljarov, E. A. and Langbein, W.}, title = {Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime}, series = {New Journal of Physics}, volume = {15}, journal = {New Journal of Physics}, number = {045013}, issn = {1367-2630}, doi = {10.1088/1367-2630/15/4/045013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123005}, year = {2013}, abstract = {Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a \(\sqrt 2\) larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime.}, language = {en} } @phdthesis{Schoell2003, author = {Sch{\"o}ll, Achim}, title = {High-resolution investigation of the electronic structure of organic thin films}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10809}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die vorliegende Arbeit befasst sich mit der elektronischen Struktur organischer D{\"u}nnfilme. Eine zentrale Frage dabei ist der Einfluss der Wechselwirkung zwischen den Molek{\"u}len in der kondensierten Phase und der Wechselwirkung an metall-organischen Grenzfl{\"a}chen auf die elektronischen Eigenschaften. Dazu wurden die experimentellen Methoden Photoelektronenspektroskopie (PES) und R{\"o}ntgenabsorptionsspektroskopie (NEXAFS) mit h{\"o}chster Energieaufl{\"o}sung angewandt. Zus{\"a}tzlich wurden ab initio Rechnungen zur theoretischen Simulation von NEXAFS Spektren durchgef{\"u}hrt. Haupts{\"a}chlich wurden d{\"u}nne, vakuumsublimierte Filme aromatischer Modellmolek{\"u}le mit sauerstoffhaltigen funktionellen Gruppen (NTCDA, PTCDA, NDCA, BPDCA und ANQ) auf Ag(111) Oberfl{\"a}chen untersucht. Die ausgew{\"a}hlten Molek{\"u}le besitzen wegen ihrer großen delokalisierten p-Elektronensysteme sehr interessante Eigenschaften f{\"u}r die Anwendung in elektronischen Bauelementen. Dank der hohen Energieaufl{\"o}sung von Synchrotronstrahlungsquellen der dritten Generation war es erstmals m{\"o}glich, die Schwingungsfeinstruktur in den NEXAFS Spektren dieser kondensierten großen Molek{\"u}le sichtbar zu machen. Der Vergleich der Daten verschiedener Molek{\"u}le liefert dabei interessante Einblicke in den Kopplungmechanismus zwischen dem elektronischen {\"U}bergang und der Schwingungsanregung. Obwohl die Molek{\"u}le eine Vielzahl verschiedener Schwingungsmoden besitzen, kann man in deren NEXAFS Spektren beobachten, dass die elektronischen {\"U}berg{\"a}nge jeweils an haupts{\"a}chlich eine Schwingungsmode koppeln. Die hochaufgel{\"o}sten XPS Spektren der Molek{\"u}le NTCDA, PTCDA, NDCA, BPDCA und ANQ zeigen bestimmte systematische Unterschiede, so dass diese Spektren als Fingerabdruck f{\"u}r die jeweilige Substanz verwendet werden k{\"o}nnen. Durch die vergleichende Auswertung der Spektren konnten die 1s Bindungsenergien aller chemisch unterschiedlichen Kohlenstoff- und Sauerstoffatome bestimmt werden. Zus{\"a}tzliche Strukturen in den Spektren k{\"o}nnen shake-up Satelliten zugeschrieben werden. Die f{\"u}nf Molek{\"u}le stellen ein ideales Modellsystem dar, um fundamentale Aspekte der Rumpfelektronenspektroskopie zu untersuchen, wie Anfangs- und Endzustandseffekte und Satelliten, die durch die intramolekulare und intermolekulare Elektronendichteverteilung im Grund- und rumpfionisierten Zustand beeinflusst werden. Ein wichtiger Punkt dieser Dissertation sind spektroskopische Untersuchungen strukturell unterschiedlicher NTCDA Monolagenphasen auf Ag(111), deren Existenz aus vorangegangenen Arbeiten bekannt ist. Deutliche Unterschiede in der elektronischen Struktur der verschiedenen Phasen, die auf die Metall-Adsorbat Wechselwirkung zur{\"u}ckzuf{\"u}hren sind, konnten sowohl mittels XPS als auch mittels NEXAFS aufgezeigt werden. Sowohl f{\"u}r die komprimierte also auch f{\"u}r die relaxierte NTCDA Monolage kann die Bindung ans Substrat als schwach chemisorptiv charakterisiert werden, was eindeutig aus der Analyse der Satellitenstrukturen in den O 1s und C 1s XPS Spektren hervorgeht, die durch die dynamische Abschirmung durch Ladungstransfer vom Substrat erzeugt werden. Die NEXAFS Daten zeigen konsistent eine teilweise Besetzung des NTCDA LUMOs. Sowohl f{\"u}r die komprimierte als auch f{\"u}r die relaxierte NTCDA Monolage finden hochinteressante Phasen{\"u}berg{\"a}nge in ungeordnete Tieftemperaturphasen beim Abk{\"u}hlen auf 160 K statt. Dabei wird die Adsorbat-Substrat Wechselwirkung st{\"a}rker und das LUMO wird vollst{\"a}ndig besetzt. Dies kann in den NEXAFS Spektren anhand des Verschwindens der zugh{\"o}rigen {\"U}berg{\"a}nge beobachtet werden. Die XPS Spektren zeigen gleichzeitig eine deutliche Abnahme der Intensit{\"a}t schlecht abgeschirmter Photoemissionszust{\"a}nde, was auf die nun effektivere Ladungstransferabschirmung zur{\"u}ckzuf{\"u}hren ist. F{\"u}r den Phasen{\"u}bergang der relaxierten Monolage konnte mittels temperaturabh{\"a}ngiger NEXAFS Messungen eindeutig ein Hystereseverhalten gezeigt und die Hysteresekurve bestimmt werden. Die Hysterese betr{\"a}gt etwa 20 K. Des weiteren wurde aus SPA-LEED Messungen die Aktivierungsenergie f{\"u}r den Phasen{\"u}bergang der relaxierten Monolage beim Abk{\"u}hlen auf ca. 60 meV bestimmt. Schließlich wurden NEXAFS Untersuchungen an Poly{\"a}thylenproben mit verschiedenem Komonomergehalt durchgef{\"u}hrt. Unterschiede in den Absorptionsspektren von Proben mit unterschiedlichem Komonomeranteil konnten eindeutig auf die unterschiedliche Kristallinit{\"a}t der Proben zur{\"u}ckgef{\"u}hrt werden, indem eine hochkristalline Probe in situ bis zur Schmelztemperatur geheizt wurde. Ab initio Rechnungen an einer Modelmatrix aus Butanmolek{\"u}len zeigen, dass die Spektren von kristallinem und amorphem Poly{\"a}thylen aufgrund der intermolekularen Wechselwirkung deutliche Unterschiede haupts{\"a}chlich f{\"u}r Resonanzen mit starkem Rydberg Charakter aufweisen. Damit lassen sich die Unterschiede in den Poly{\"a}thylenspektren durch die {\"U}berlagerung der Signaturen der kristallinen und amorphen Anteile erkl{\"a}ren, die je nach Kristallinit{\"a}t der Probe in unterschiedlichen Verh{\"a}ltnissen vorliegen.}, subject = {D{\"u}nne Schicht}, language = {en} }