@article{EngertDollVonaetal.2023, author = {Engert, Jonas and Doll, Julia and Vona, Barbara and Ehret Kasemo, Totta and Spahn, Bjoern and Hagen, Rudolf and Rak, Kristen and Voelker, Johannes}, title = {mRNA abundance of neurogenic factors correlates with hearing capacity in auditory brainstem nuclei of the rat}, series = {Life}, volume = {13}, journal = {Life}, number = {9}, issn = {2075-1729}, doi = {10.3390/life13091858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357392}, year = {2023}, abstract = {Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats' CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.}, language = {en} } @article{FauserWeselekHauptmannetal.2020, author = {Fauser, Mareike and Weselek, Grit and Hauptmann, Christine and Markert, Franz and Gerlach, Manfred and Hermann, Andreas and Storch, Alexander}, title = {Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse Brain}, series = {Frontiers in Neuroanatomy}, volume = {14}, journal = {Frontiers in Neuroanatomy}, doi = {10.3389/fnana.2020.558435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212485}, year = {2020}, abstract = {The major catecholamines—dopamine (DA) and norepinephrine (NE)—are not only involved in synaptic communication but also act as important trophic factors and might ultimately be involved in mammalian brain development. The catecholaminergic innervation of neurogenic regions of the developing brain and its putative relationship to neurogenesis is thus of pivotal interest. We here determined DA and NE innervation around the ventricular/subventricular zone (VZ/SVZ) bordering the whole ventricular system of the developing mouse brain from embryonic day 14.5 (E14.5), E16.5, and E19.5 until postnatal day zero (P0) by histological evaluation and HPLC with electrochemical detection. We correlated these data with the proliferation capacity of the respective regions by quantification of MCM\(^{2+}\) cells. During development, VZ/SVZ catecholamine levels dramatically increased between E16.5 and P0 with DA levels increasing in forebrain VZ/SVZ bordering the lateral ventricles and NE levels raising in midbrain/hindbrain VZ/SVZ bordering the third ventricle, the aqueduct, and the fourth ventricle. Conversely, proliferating MCM\(^{2+}\) cell counts dropped between E16.5 and E19.5 with a special focus on all VZ/SVZs outside the lateral ventricles. We detected an inverse strong negative correlation of the proliferation capacity in the periventricular neurogenic regions (log-transformed MCM\(^{2+}\) cell counts) with their NE levels (r = -0.932; p < 0.001), but not their DA levels (r = 0.440; p = 0.051) suggesting putative inhibitory effects of NE on cell proliferation within the periventricular regions during mouse brain development. Our data provide the first framework for further demandable studies on the functional importance of catecholamines, particularly NE, in regulating neural stem/progenitor cell proliferation and differentiation during mammalian brain development.}, language = {en} } @article{KumarNaumannAigneretal.2015, author = {Kumar, Praveen and Naumann, Ulrike and Aigner, Ludwig and Wischhusen, Joerg and Beier, Christoph P and Beier, Dagmar}, title = {Impaired TGF-β induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53}, series = {American Journal of Cancer Research}, volume = {5}, journal = {American Journal of Cancer Research}, number = {11}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144262}, pages = {3436-3445}, year = {2015}, abstract = {Gliomas have been classified according to their histological properties. However, their respective cells of origin are still unknown. Neural progenitor cells (NPC) from the subventricular zone (SVZ) can initiate tumors in murine models of glioma and are likely cells of origin in the human disease. In both, p53 signaling is often functionally impaired which may contribute to tumor formation. Also, TGF-beta, which under physiological conditions exerts a strong control on the proliferation of NPCs in the SVZ, is a potent mitogen on glioma cells. Here, we approach on the crosstalk between p53 and TGF-beta by loss of function experiments using NPCs derived from p53 mutant mice, as well as pharmacological inhibition of TGF-beta signaling using TGF-beta receptor inhibitors. NPC derived from p53 mutant mice showed increased clonogenicity and more rapid proliferation than their wildtype counterparts. Further, NPC derived from p53\(^{mut/mut}\) mice were insensitive to TGF-beta induced growth arrest. Still, the canonical TGF-beta signaling pathway remained functional in the absence of p53 signaling and expression of key proteins as well as phosphorylation and nuclear translocation of SMAD2 were unaltered. TGF-beta-induced p21 expression could, in contrast, only be detected in p53\(^{wt/wt}\) but not in p53\(^{mut/mut}\) NPC. Conversely, inhibition of TGF-beta signaling using SB431542 increased proliferation of p53\(^{wt/wt}\) but not of p53\(^{mut/mut}\) NPC. In conclusion, our data suggest that the TGF-beta induced growth arrest in NPC depends on functional p53. Mutational inactivation of p53 hence contributes to increased proliferation of NPC and likely to the formation of hyperplasia of the SVZ observed in p53 deficient mice in vivo.}, language = {en} } @article{MuellerMuellerRiederer2021, author = {M{\"u}ller, Thomas and Mueller, Bernhard Klaus and Riederer, Peter}, title = {Perspective: Treatment for disease modification in chronic neurodegeneration}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236644}, year = {2021}, abstract = {Symptomatic treatments are available for Parkinson's disease and Alzheimer's disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experimental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guidance molecule A exist. First clinical studies in neurological conditions with an acute onset are under way. Future clinical trials with these antibodies should initially focus on well characterized uniform cohorts of patients. The efficiency of repulsive guidance molecule A antagonism and associated stimulation of neurogenesis should be demonstrated with objective assessment tools to counteract dilution of therapeutic effects by subjectivity and heterogeneity of chronic disease entities. Such a research concept will hopefully enhance clinical test strategies and improve the future therapeutic armamentarium for chronic neurodegeneration.}, language = {en} } @article{VoelkerVoelkerEngertetal.2021, author = {Voelker, Johannes and Voelker, Christine and Engert, Jonas and Goemann, Nikolas and Hagen, Rudolf and Rak, Kristen}, title = {Spontaneous Calcium Oscillations through Differentiation: A Calcium Imaging Analysis of Rat Cochlear Nucleus Neural Stem Cells}, series = {Cells}, volume = {10}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells10102802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248482}, year = {2021}, abstract = {Causal therapies for the auditory-pathway and inner-ear diseases are still not yet available for clinical application. Regenerative medicine approaches are discussed and examined as possible therapy options. Neural stem cells could play a role in the regeneration of the auditory pathway. In recent years, neural stem and progenitor cells have been identified in the cochlear nucleus, the second nucleus of the auditory pathway. The current investigation aimed to analyze cell maturation concerning cellular calcium activity. Cochlear nuclei from PND9 CD rats were microscopically dissected and propagated as neurospheres in free-floating cultures in stem-cell medium (Neurobasal, B27, GlutaMAX, EGF, bFGF). After 30 days, the dissociation and plating of these cells took place under withdrawal of the growth factors and the addition of retinoic acid, which induces neural cell differentiation. Calcium imaging analysis with BAPTA-1/Oregon Green was carried out at different times during the differentiation phase. In addition, the influence of different voltage-dependent calcium channels was analyzed through the targeted application of inhibitors of the L-, N-, R- and T-type calcium channels. For this purpose, comparative examinations were performed on CN NSCs, and primary CN neurons. As the cells differentiated, a significant increase in spontaneous neuronal calcium activity was demonstrated. In the differentiation stage, specific frequencies of the spontaneous calcium oscillations were measured in different regions of the individual cells. Initially, the highest frequency of spontaneous calcium oscillations was ascertainable in the maturing somata. Over time, these were overtaken by calcium oscillations in the axons and dendrites. Additionally, in the area of the growth cones, an increasing activity was determined. By inhibiting voltage-dependent calcium channels, their expression and function in the differentiation process were confirmed. A comparable pattern of maturation of these channels was found in CN NSCs and primary CN neurons. The present results show that neural stem cells of the rat cochlear nucleus differentiated not only morphologically but also functionally. Spontaneous calcium activities are of great relevance in terms of neurogenesis and integration into existing neuronal structures. These functional aspects of neurogenesis within the auditory pathway could serve as future targets for the exogenous control of neuronal regeneration.}, language = {en} }