@phdthesis{Abel2023, author = {Abel, Daniel Karl-Joseph}, title = {Weiterentwicklung der Bodenhydrologie des regionalen Klimamodells REMO}, doi = {10.25972/OPUS-31146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Bodenfeuchte stellt eine essenzielle Variable f{\"u}r den Energie-, Feuchte- und Stoffaustausch zwischen Landoberfl{\"a}che und Atmosph{\"a}re dar. Ihre Auswirkungen auf Temperatur und Niederschlag sind vielf{\"a}ltig und komplex. Die in Klimamodellen verwendeten Schemata zur Simulation der Bodenfeuchte, auch bodenhydrologische Schemata genannt, sind aufgrund des Ursprungs der Klimamodelle aus Wettermodellen jedoch h{\"a}ufig sehr stark vereinfacht dargestellt. Bei Klimamodellen, die Simulationen mit einer groben Aufl{\"o}sung von mehreren Zehner- oder Hunderterkilometern rechnen, k{\"o}nnen viele Prozesse vernachl{\"a}ssigt werden. Da die Aufl{\"o}sung der Klimamodelle jedoch stetig steigt und mittlerweile beim koordinierten Projekt regionaler Klimamodelle CORDEX-CORE standardm{\"a}ßig bei 0.22° Kantenl{\"a}nge liegt, m{\"u}ssen auch h{\"o}her aufgel{\"o}ste Daten und mehr Prozesse simuliert werden. Dies gilt erst recht mit Blick auf konvektionsaufl{\"o}sende Simulationen mit wenigen Kilometern Kantenl{\"a}nge. Mit steigenden Modellaufl{\"o}sungen steigt zugleich die Komplexit{\"a}t und Differenziertheit der Fragestellungen, die mit Hilfe von Klimamodellen beantwortet werden sollen. An diesem Punkt setzt auch das Projekt BigData@Geo an, in dessen Rahmen die vorliegende Arbeit entstand. Ziel dieses Projektes ist es, hochaufgel{\"o}ste Klimainformationen f{\"u}r den bayerischen Regierungsbezirk Unterfranken f{\"u}r Akteure aus der Land- und Forstwirtschaft sowie dem Weinbau zur Verf{\"u}gung zu stellen. Auf diesen angewandten und grundlegenden Anforderungen und Zielsetzungen basierend, bedarf auch das in dieser Arbeit verwendete regionale Klimamodell REMO (Version 2015) der weiteren Entwicklung. So ist das Hauptziel der Arbeit das bestehende einschichtige bodenhydrologische Schema durch ein mehrschichtiges zu ersetzen. Der Vorteil mehrerer simulierter Bodenschichten besteht darin, dass nun die vertikale Bewegung des Wassers in Form von Versickerung und kapillarem Aufstieg simuliert werden kann. Dies geschieht auf der Basis bodenhydrologischer Parameter, deren Wert in Abh{\"a}ngigkeit vom Boden und der Bodenfeuchte {\"u}ber die Wasserr{\"u}ckhaltekurve bestimmt wird. F{\"u}r diese Kurve existieren verschiedene Parametrisierungen, von denen die Ans{\"a}tze von Clapp-Hornberger und van Genuchten verwendet wurden. Außerdem kann die Bodenfeuchte nun bis zu einer Tiefe von circa 10 m beziehungsweise der Tiefe des anstehenden Gesteins simuliert werden. Damit besteht im Gegensatz zum vorherigen Schema, dessen Tiefe auf die Wurzeltiefe beschr{\"a}nkt ist, die M{\"o}glichkeit, dass Wasser auch unterhalb der Wurzeln zur Verf{\"u}gung stehen kann und somit die absolute im Boden verf{\"u}gbare Wassermenge zunimmt. Die Schichtung erlaubt dar{\"u}ber hinaus die Verdunstung aus unbewachsenem Boden lediglich auf Basis des in der obersten Schicht verf{\"u}gbaren Wassers. Ein weiterer Prozess, der dank der Schichtung und der weiter unten erl{\"a}uterten Datens{\"a}tze neu parametrisiert werden kann, ist die Infiltration. F{\"u}r die Verwendung des Schemas sind Informationen {\"u}ber bodenhydrologische Parameter, die Wurzeltiefe und die Tiefe bis zum anstehenden Gestein erforderlich. Entsprechende Datens{\"a}tze m{\"u}ssen hierf{\"u}r aufbereitet und in das Modell eingebaut werden. Bez{\"u}glich der Wurzeltiefe wurden drei sich bez{\"u}glich der Tiefe, der Definition und der verf{\"u}gbaren Aufl{\"o}sung stark voneinander unterscheidende Datens{\"a}tze verglichen. Letztendlich wird die Wurzeltiefe aus dem mit einer anderen REMO-Version gekoppelten Vegetationsmodul iMOVE verwendet, da zuk{\"u}nftig eine Kopplung dieses Moduls mit dem mehrschichtigen Boden geplant ist und die Wurzeltiefen damit konsistent sind. Zudem ist die zugrundeliegende Aufl{\"o}sung der Daten hoch und es werden maximale Wurzeltiefen ber{\"u}cksichtigt, die besonders wichtig f{\"u}r die Simulation von Landoberfl{\"a}che-Atmosph{\"a}re-Interaktionen sind. Diese Vorteile brachten die anderen Datens{\"a}tze nicht mit. In der finalen Modellversion werden f{\"u}r die Tiefe bis zum anstehenden Gestein und die Korngr{\"o}ßenverteilungen die Daten von SoilGrids verwendet. Ein Vergleich mit anderen Bodendatens{\"a}tzen fand in einer parallel laufenden Dissertation statt (Ziegler 2022). Bei SoilGrids ist hervorzuheben, dass die Korngr{\"o}ßenverteilungen in einer hohen r{\"a}umlichen Aufl{\"o}sung (1 km^2 oder h{\"o}her) und mit mehreren vertikalen Schichten vorliegen. Gegen{\"u}ber dem urspr{\"u}nglich in REMO verwendeten Datensatz mit einer Kantenl{\"a}nge von 0.5° und ohne vertikale Differenzierung ist dies eine starke Verbesserung der Eingangsdaten. Dazu kommt, dass die Korngr{\"o}ßenverteilungen die Verwendung kontinuierlicher Pedotransferfunktionen statt f{\"u}nf diskreter Texturklassen, denen f{\"u}r die bodenhydrologischen Parameter fixe Tabellenwerte zugewiesen werden, erm{\"o}glichen. Dies f{\"u}hrt zu einer deutlich besseren Differenzierung des heterogenen Bodens. Im Rahmen der Arbeit wurden insgesamt 19 Simulationen f{\"u}r Europa und ein erweitertes Deutschlandgebiet mit Aufl{\"o}sungen von 0.44° beziehungsweise 0.11° f{\"u}r den Zeitraum 2000 bis 2018 gerechnet. Dabei zeigte sich, dass die Einf{\"u}hrung des mehrschichtigen Bodenschemas gegen{\"u}ber dem einschichtigen Schema zu einer Verringerung der Bodenfeuchte in der Wurzeltiefe f{\"u}hrt. Nichtsdestotrotz nimmt die absolute Wassermenge des Bodens durch die Ber{\"u}cksichtigung des Bodens unterhalb der Wurzelzone zu. Bezogen auf die einzelnen Schichten wird die Bodenfeuchte damit zwar untersch{\"a}tzt, im Laufe der Modellentwicklung kann jedoch eine Verbesserung im Vergleich zu ERA5 erzielt werden. Das neue Schema f{\"u}hrt zu einer Verringerung der Evapotranspiration, die {\"u}ber alle Schritte der Modellentwicklung und besonders w{\"a}hrend der Sommermonate auftritt. Im Vergleich zu Validationsdaten von ERA5 und GLEAM zeigt sich, dass dies eine Verbesserung dieser Gr{\"o}ße bedeutet, die sowohl in der Fl{\"a}che als auch beim Fehler und in der Verteilung auftritt. Gleiches l{\"a}sst sich f{\"u}r den Oberfl{\"a}chenabfluss sagen. Hierf{\"u}r implementierte Schemata (Philip, Green-Ampt), die anders als das standardm{\"a}ßig verwendete Improved-Arno-Schema bodenhydrologische Parameter ber{\"u}cksichtigen, konnten eine weitere Verbesserung im Flachland zeigen. In Gebirgsregionen nahm der Fehler durch die nicht enthaltene Ber{\"u}cksichtigung der Hangneigung jedoch zu, sodass in der finalen Modellversion auf das Improved-Arno-Schema zur{\"u}ckgegriffen wurde. Die Temperatur steigt durch die urspr{\"u}ngliche Version des mehrschichtigen Schemas zun{\"a}chst an, was zu einer {\"U}ber- statt der vorherigen Untersch{\"a}tzung gegen{\"u}ber E-OBS f{\"u}hrt. Die Modellentwicklung resultiert zwar in einer Reduzierung der Temperatur, jedoch f{\"a}llt diese zu stark aus, sodass der Temperaturfehler letztendlich gr{\"o}ßer als in der einschichtigen Modellversion ist. Da die Evapotranspiration jedoch maßgeblich verbessert wurde, kann dieser Fehler eventuell auf ein {\"u}berm{\"a}ßiges Tuning der Temperatur zur{\"u}ckgef{\"u}hrt werden. Die Betrachtung von Hitzeereignissen am Beispiel der Sommer 2003 und 2018 hat gezeigt, dass die Modellentwicklung dazu beitr{\"a}gt, diese Ereignisse besser als das einschichtige Schema zu simulieren. Zwar trifft dies nicht auf das r{\"a}umliche Verhalten der mittleren Temperatur zu, jedoch auf deren zeitlichen Verlauf. Hinzu kommt die bessere Simulation der t{\"a}glichen Extrem- und besonders der Minimaltemperatur, was zu einer Erh{\"o}hung der t{\"a}glichen Temperaturspanne f{\"u}hrt. Diese wird von Klimamodellen in der Regel zu stark untersch{\"a}tzt. Durch die Ber{\"u}cksichtigung der vertikalen Wasserfl{\"u}sse hat sich jedoch auch gezeigt, dass noch enormes Entwicklungspotenzial mit Blick auf (boden)hydrologische Prozesse besteht. Dies gilt in besonderem Maße f{\"u}r zuk{\"u}nftige Simulationen mit konvektionserlaubender Aufl{\"o}sung. So sollten subskalige Informationen des Bodens und der Orographie ber{\"u}cksichtigt werden. Dies dient einerseits der Repr{\"a}sentation vorliegender Heterogenit{\"a}ten und kann andererseits, wie am Beispiel der Infiltrationsschemata dargelegt, zur Verbesserung bestehender Prozesse beitragen. Da die simulierte Drainage durch das mehrschichtige Bodenschema im gleichen Maße zu- wie der Oberfl{\"a}chenabfluss abnimmt und das Wasser dem Modell in der Folge nicht weiter zur Verf{\"u}gung steht, sollte zuk{\"u}nftig auch Grundwasser im Modell ber{\"u}cksichtigt werden. Eine Vielzahl von Studien konnte einen Mehrwert durch die Implementierung dieser Variable und damit verbundener Prozesse feststellen. Mittelfristig ist jedoch insgesamt die Kopplung an ein hydrologisches Modell zu empfehlen, um die bei hochaufl{\"o}senden Simulationen relevanten Prozesse angemessen repr{\"a}sentieren zu k{\"o}nnen. Hierf{\"u}r bieten sich beispielsweise ParFlow oder mHM an. Insgesamt ist festzuhalten, dass das mehrschichtige Bodenschema einen Mehrwert liefert, da schwer zu simulierende und in der Postprozessierung zu korrigierende Variablen wie die Evapotranspiration und der Oberfl{\"a}chenabfluss deutlich besser modelliert werden k{\"o}nnen als mit dem einschichtigen Schema. Dies gilt auch f{\"u}r die Extremtemperaturen. Beides ist klar auf die Schichtung des Bodens und damit einhergehender Prozesse zur{\"u}ckzuf{\"u}hren. Bez{\"u}glich der Daten zeigt sich, dass die Wurzeltiefe, die Ber{\"u}cksichtigung von SoilGrids und die vertikale Bodeninformation f{\"u}r die weitere Optimierung verantwortlich sind. Dar{\"u}ber hinaus ist der h{\"o}here Informationsgehalt, der anhand der geschichteten Bodenfeuchte zur Verf{\"u}gung steht, ebenfalls als Mehrwert einzustufen.}, subject = {Klima}, language = {de} }