@article{DuerigGudmundssonKarmannetal.2015, author = {D{\"u}rig, Tobias and Gudmundsson, Magn{\´u}s Tumi and Karmann, Sven and Zimanowski, Bernd and Dellino, Pierfrancesco and Rietze, Martin and B{\"u}ttner, Ralf}, title = {Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition-a case study of the 2010 eruption of Eyjafjallaj{\"o}kull, Iceland}, series = {Earth, Planets and Space}, volume = {67}, journal = {Earth, Planets and Space}, number = {180}, doi = {10.1186/s40623-015-0351-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138635}, year = {2015}, abstract = {The 2010 eruption of Eyjafjallajokull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 . 10\(^4\) kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.}, language = {en} } @article{KuemmelLindenberger2014, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {How energy conversion drives economic growth far from the equilibrium of neoclassical economics}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {125008}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/12/125008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118102}, year = {2014}, abstract = {Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energyʼs share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the 'virtually binding' technological constraints on entrepreneurial decisions, and the existence of 'soft constraints' as well. Implications for employment and future economic growth are discussed.}, language = {en} } @article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy, entropy, constraints, and creativity in economic growth and crises}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {10}, issn = {1099-4300}, doi = {10.3390/e22101156}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216275}, year = {2020}, abstract = {The neoclassical mainstream theory of economic growth does not care about the First and the Second Law of Thermodynamics. It usually considers only capital and labor as the factors that produce the wealth of modern industrial economies. If energy is taken into account as a factor of production, its economic weight, that is its output elasticity, is assigned a meager magnitude of roughly 5 percent, according to the neoclassical cost-share theorem. Because of that, neoclassical economics has the problems of the "Solow Residual", which is the big difference between observed and computed economic growth, and of the failure to explain the economic recessions since World War 2 by the variations of the production factors. Having recalled these problems, we point out that technological constraints on factor combinations have been overlooked in the derivation of the cost-share theorem. Biophysical analyses of economic growth that disregard this theorem and mend the neoclassical deficiencies are sketched. They show that energy's output elasticity is much larger than its cost share and elucidate the existence of bidirectional causality between energy conversion and economic growth. This helps to understand how economic crises have been triggered and overcome by supply-side and demand-side actions. Human creativity changes the state of economic systems. We discuss the challenges to it by the risks from politics and markets in conjunction with energy sources and technologies, and by the constraints that the emissions of particles and heat from entropy production impose on industrial growth in the biosphere.}, language = {en} } @article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy in Growth Accounting and the Aggregation of Capital and Output}, series = {Biophysical Economics and Sustainability}, volume = {5}, journal = {Biophysical Economics and Sustainability}, doi = {10.1007/s41247-020-00068-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241135}, year = {2020}, abstract = {We review the physical aggregation of value added and capital in terms of work performance and information processing and its relation to the deflated monetary time series of output and capital. In growth accounting it complements the time series of labor and energy, measured in hours worked per year and kilowatt-hours consumed per year, respectively. This aggregation is the conceptual basis on which those energy-dependent production functions have been constructed that reproduce economic growth of major industrial countries in the 20th century with small residuals and output elasticities that are for energy much larger and for labor much smaller than the cost shares of these factors. Accounting for growth in such a way, which deviates from that of mainstream economics, may serve as a first step towards integrating the First and the Second Law of Thermodynamics into economics.}, language = {en} } @article{SauerWiessnerSchoelletal.2015, author = {Sauer, C and Wießner, M and Sch{\"o}ll, A and Reinert, F}, title = {Observation of a molecule-metal interface charge transfer related feature by resonant photoelectron spectroscopy}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, number = {043016}, doi = {10.1088/1367-2630/17/4/043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148672}, year = {2015}, abstract = {We report the discovery of a charge transfer (CT) related low binding energy feature at a molecule-metal interface by the application of resonant photoelectron spectroscopy (RPES). This interface feature is neither present for molecular bulk samples nor for the clean substrate. A detailed analysis of the spectroscopic signature of the low binding energy feature shows characteristics of electronic interaction not found in other electron spectroscopic techniques. Within a cluster model description this feature is assigned to a particular eigenstate of the photoionized system that is invisible in direct photoelectron spectroscopy but revealed in RPES through a relative resonant enhancement. Interpretations based on considering only the predominant character of the eigenstates explain the low binding energy feature by an occupied lowest unoccupied molecular orbital, which is either realized through CT in the ground or in the intermediate state. This reveals that molecule-metal CT is responsible for this feature. Consequently, our study demonstrates the sensitivity of RPES to electronic interactions and constitutes a new way to investigate CT at molecule-metal interfaces.}, language = {en} } @article{ShuklaMannheim2020, author = {Shukla, A. and Mannheim, K.}, title = {Gamma-ray flares from relativistic magnetic reconnection in the jet of the quasar 3C 279}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-17912-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231328}, year = {2020}, abstract = {Spinning black holes in the centres of galaxies can release powerful magnetised jets. When the jets are observed at angles of less than a few degrees to the line-of-sight, they are called blazars, showing variable non-thermal emission across the electromagnetic spectrum from radio waves to gamma rays. It is commonly believed that shock waves are responsible for this dissipation of jet energy. Here we show that gamma-ray observations of the blazar 3C 279 with the space-borne telescope Fermi-LAT reveal a characteristic peak-in-peak variability pattern on time scales of minutes expected if the particle acceleration is instead due to relativistic magnetic reconnection. The absence of gamma-ray pair attenuation shows that particle acceleration takes place at a distance of ten thousand gravitational radii from the black hole where the fluid dynamical kink instability drives plasma turbulence.}, language = {en} } @article{ThierschmannArnoldMittermuelleretal.2015, author = {Thierschmann, H and Arnold, F and Mitterm{\"u}ller, M and Maier, L and Heyn, C and Hansen, W and Buhmann, H and Molenkamp, L W}, title = {Thermal gating of charge currents with Coulomb coupled quantum dots}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, number = {113003}, doi = {10.1088/1367-2630/17/11/113003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145196}, year = {2015}, abstract = {We have observed thermal gating, i.e. electrostatic gating induced by hot electrons. The effect occurs in a device consisting of two capacitively coupled quantum dots. The double dot system is coupled to a hot electron reservoir on one side (QD1), while the conductance of the second dot (QD2) is monitored. When a bias across QD2 is applied we observe a current which is strongly dependent on the temperature of the heat reservoir. This current can be either enhanced or suppressed, depending on the relative energetic alignment of the QD levels. Thus, the system can be used to control a charge current by hot electrons.}, language = {en} } @article{TimmermansvanderTolTimmermansetal.2015, author = {Timmermans, Wim J. and van der Tol, Christiaan and Timmermans, Joris and Ucer, Murat and Chen, Xuelong and Alonso, Luis and Moreno, Jose and Carrara, Arnaud and Lopez, Ramon and Fernando de la Cruz, Tercero and Corcoles, Horacio L. and de Miguel, Eduardo and Sanchez, Jose A. G. and Perez, Irene and Belen, Perez and Munoz, Juan-Carlos J. and Skokovic, Drazen and Sobrino, Jose and Soria, Guillem and MacArthur, Alasdair and Vescovo, Loris and Reusen, Ils and Andreu, Ana and Burkart, Andreas and Cilia, Chiara and Contreras, Sergio and Corbari, Chiara and Calleja, Javier F. and Guzinski, Radoslaw and Hellmann, Christine and Herrmann, Ittai and Kerr, Gregoire and Lazar, Adina-Laura and Leutner, Benjamin and Mendiguren, Gorka and Nasilowska, Sylwia and Nieto, Hector and Pachego-Labrador, Javier and Pulanekar, Survana and Raj, Rahul and Schikling, Anke and Siegmann, Bastian and von Bueren, Stefanie and Su, Zhongbo (Bob)}, title = {An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign}, series = {Acta Geophysica}, volume = {63}, journal = {Acta Geophysica}, number = {6}, doi = {10.2478/s11600-014-0254-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136491}, pages = {1465-1484}, year = {2015}, abstract = {The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.}, language = {en} } @article{WiessnerRodriguezLastraZiroffetal.2012, author = {Wiessner, M. and Rodriguez Lastra, N. S. and Ziroff, J. and Forster, F. and Puschnig, P. and D{\"o}ssel, L. and M{\"u}llen, K. and Sch{\"o}ll, A. and Reinert, F.}, title = {Different views on the electronic structure of nanoscale graphene: aromatic molecule versus quantum dot}, series = {New Journal of Physics}, volume = {14}, journal = {New Journal of Physics}, number = {113008}, doi = {10.1088/1367-2630/14/11/113008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130184}, pages = {12}, year = {2012}, abstract = {Graphene's peculiar electronic band structure makes it of interest for new electronic and spintronic approaches. However, potential applications suffer from quantization effects when the spatial extension reaches the nanoscale. We show by photoelectron spectroscopy on nanoscaled model systems (disc-shaped, planar polyacenes) that the two-dimensional band structure is transformed into discrete states which follow the momentum dependence of the graphene Bloch states. Based on a simple model of quantum wells, we show how the band structure of graphene emerges from localized states, and we compare this result with ab initio calculations which describe the orbital structure.}, language = {en} }