@article{BrueningWehnerHausneretal.2016, author = {Br{\"u}ning, Christoph and Wehner, Johannes and Hausner, Julian and Wenzel, Michael and Engel, Volker}, title = {Exciton dynamics in perturbed vibronic molecular aggregates}, series = {Structural Dynamics}, volume = {3}, journal = {Structural Dynamics}, doi = {10.1063/1.4936127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126085}, pages = {043201}, year = {2016}, abstract = {A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states.}, language = {en} } @article{VermaSteinbacherSchmiedeletal.2016, author = {Verma, Pramod Kumar and Steinbacher, Andreas and Schmiedel, Alexander and Nuernberger, Patrick and Brixner, Tobias}, title = {Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy}, series = {Structural Dynamics}, volume = {3}, journal = {Structural Dynamics}, doi = {10.1063/1.4937363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181301}, year = {2016}, abstract = {We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state.}, language = {en} }