@phdthesis{Hartmann2010, author = {Hartmann, Thomas}, title = {Nitrogen metabolism in Aspergillus fumigatus with emphasis on the oligopeptide transporter (OPT) gene family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54027}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The saprophytic filamentous fungus Aspergillus fumigatus has been gaining importance as an opportunistic human pathogen over the past decades. Advances in modern medicine have created a growing group of patients susceptible to infection with A. fumigatus, often contracting potentially deadly invasive aspergillosis. The virulence of this pathogen appears to be a multifactorial trait, a combination of physiological characteristics that enables the fungus to infect immunocompromised humans. This work concentrates on the nitrogen metabolism of A. fumigatus, which is essential for meeting the nutritional needs inside the human host. Using DNA microarrays, the transcriptional response during growth on three different secondary nitrogen sources was examined, which revealed the metabolic versatility of A. fumigatus, especially when challenged with proteins as the sole source of nitrogen. In-depth transcriptional profiling of the eight-member oligopeptide transporter (OPT) gene family underlined the importance of oligopeptide transport for growth on complex nitrogen sources like BSA or collagen. Heterologous expression of the opt genes in Saccharomyces cerevisiae showed their functionality as oligopeptide transporters, and characterized their substrate specificity. Using a Cre/loxP based genetic tool, a complete deletion of all opt genes in A. fumigatus was achieved. The resultant strain exhibited diminished growth on medium where the oligopeptide GPGG was the sole nitrogen source, but did not show any other in vitro phenotype. The opt deletion strain was not attenuated in virulence in a murine model of pulmonary aspergillosis, suggesting that the OPT gene family is not necessary for successful infection. The connection of oligopeptide transport and extracellular proteolytic activity was investigated by deleting the genes encoding Dpp4 and Dpp5, two dipeptidyl peptidases, or PrtT, the transcriptional regulator of major secreted proteases, in the complete opt deletion background. In contrast to the deletion of dpp4 and dpp5, which did not result in any additional phenotype, the absence of prtT led to a drastic growth defect on porcine lung agar. This suggests a synergistic action of extracellular proteolytic digest of proteins and transport of oligopeptide degradation products into the cell. Finally, this work established the bacterial β-Rec/six site-specific recombination system as a novel genetic tool for targeted gene deletion in A. fumigatus.}, subject = {Aspergillus fumigatus}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, {\"O}zge and Xu, Zhuofei and Brakhage, Axel A. and Dandekar, Thomas}, title = {Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246318}, year = {2021}, abstract = {Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.}, language = {en} } @phdthesis{Bergmann2011, author = {Bergmann, Anna}, title = {Untersuchungen zur Verwertung proteinhaltiger Substrate als m{\"o}gliche Virulenzdeterminante des humanpathogenen Schimmelpilzes Aspergillus fumigatus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67333}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die asexuellen Sporen von Aspergillus fumigatus sind ubiquit{\"a}r verbreitete Luftkeime. Als Saprophyt ist dieser opportunistisch humanpathogene Pilz darauf spezialisiert, polymere Substanzen aus dem umgebenden Milieu zu zersetzen, um daraus die von ihm ben{\"o}tigten N{\"a}hrstoffe zu generieren und aufzunehmen. Die F{\"a}higkeit, verschiedene Stickstoff- und Kohlenstoffquellen zu verwerten, tr{\"a}gt dabei zu seiner Virulenz bei und hierbei scheint die extrazellul{\"a}re Proteolyse eine wichtige Rolle zu spielen. Sekretierte Proteasen, die das umgebende Gewebe w{\"a}hrend einer Infektion mit A. fumigatus erschließen, k{\"o}nnten somit zu dessen Pathogenit{\"a}t beitragen. Dementsprechend sollte im Rahmen dieser Arbeit die Bedeutung einer Regulation der extrazellul{\"a}ren proteolytischen Aktivit{\"a}t von A. fumigatus f{\"u}r dessen Virulenz untersucht werden. Dies geschah durch Untersuchungen eines konservierten Transkriptionsfaktors, PrtT. Dabei stellte sich heraus, dass PrtT die Expression der drei Hauptproteasen von A. fumigatus, Alp, Mep und Pep stark beeinflusst, in einem murinen Tiermodell der pulmonaren Aspergillose scheint dieser Regulator jedoch keine Rolle f{\"u}r die Pathogenit{\"a}t von A. fumigatus zu spielen. Um einen weiteren Aspekt des pilzlichen Aminos{\"a}urestoffwechsels zu beleuchten, wurde die Biosynthese der aromatischen Aminos{\"a}uren als m{\"o}gliche Virulenzdeterminate untersucht. F{\"u}r den Menschen sind diese Aminos{\"a}uren essentiell, weshalb dieser Syntheseweg ein m{\"o}gliches Ziel f{\"u}r antimykotische Substanzen darstellen k{\"o}nnte. Es konnten mehrere f{\"u}r A. fumigatus essentielle Komponenten des Shikimatweges identifiziert werden, des Weiteren wurden Deletionsmutanten in den Genen aroC und trpA, die f{\"u}r die Chorismatmutase bzw. Anthranilatsynthase der Biosynthese von Phenylalanin und Tyrosin bzw. Tryptophan kodieren, erzeugt und ph{\"a}notypisch charakterisiert. Deren Untersuchung in einem alternativen Tiermodell der Aspergillose zeigte eine deutlich attenuierte Virulenz. Diese Ergebnisse verdeutlichen, wie wichtig die Biosynthese der aromatischen Aminos{\"a}uren f{\"u}r das Wachstum von A. fumigatus ist, und dass ein Eingriff in diesen Syntheseweg eine lohnende Strategie zur Entwicklung neuer Antimykotika sein k{\"o}nnte. Die hier pr{\"a}sentierten Ergebnisse unterstreichen die f{\"u}r den Schimmelpilz A. fumigatus typische Redundanz bez{\"u}glich extrazellul{\"a}rer proteolytischer Enzyme und dass diese nur bedingt hinsichtlich ihres Virulenzbeitrags untersucht werden k{\"o}nnen. Im Gegensatz hierzu lassen sich bestimmte Stoffwechselwege, die oftmals durch einzigartige Genprodukte katalysiert werden, unter Umst{\"a}nden besser als unspezifische aber vielversprechende Virulenzdeterminanten identifizieren.}, subject = {Aspergillus fumigatus}, language = {de} } @article{AmichKrappmann2012, author = {Amich, Jorge and Krappmann, Sven}, title = {Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality}, series = {Frontiers in Microbiology}, volume = {3}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2012.00414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123669}, pages = {414}, year = {2012}, abstract = {Incidence rates of infections caused by environmental opportunistic fungi have risen over recent decades. Aspergillus species have emerged as serious threat for the immunecompromised, and detailed knowledge about virulence-determining traits is crucial for drug target identification. As a prime saprobe, A. fumigatus has evolved to efficiently adapt to various stresses and to sustain nutritional supply by osmotrophy, which is characterized by extracellular substrate digestion followed by efficient uptake of breakdown products that are then fed into the fungal primary metabolism. These intrinsic metabolic features are believed to be related with its virulence ability. The plethora of genes that encode underlying effectors has hampered their in-depth analysis with respect to pathogenesis. Recent developments in Aspergillus molecular biology allow conditional gene expression or comprehensive targeting of gene families to cope with redundancy. Furthermore, identification of essential genes that are intrinsically connected to virulence opens accurate perspectives for novel targets in antifungal therapy.}, language = {en} }