@phdthesis{Kollert2015, author = {Kollert, Sina}, title = {Kaliumkan{\"a}le der K2P-Familie kontrollieren die Aktivit{\"a}t neuronaler Zellen - TRESK als Regulator inflammatorischer Hyperalgesie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Das Empfinden von Schmerz ist f{\"u}r uns {\"u}berlebenswichtig. Chronischer Schmerz hingegen hat seine physiologische Bedeutung verloren und wird als eigenes Krankheitsbild angesehen. Schmerzempfindung beginnt mit der Nozizeption. Die Zellk{\"o}rper nozizeptiver Neurone befinden sich in den Spinalganglien (Hinterwurzelganglion, dorsal root ganglion DRG) und Trigeminalganglien (TG). In den DRG-Neuronen macht der Zwei-Poren-Kaliumkanal (K2P) TRESK die Hauptkomponente eines Kaliumstromes, des „standing outward currents" IKSO, aus. Die physiologische Hauptaufgabe der TRESK-Kan{\"a}le liegt in der Regulation der zellul{\"a}ren Erregbarkeit nozizeptiver Neurone. W{\"a}hrend einer Entz{\"u}ndungsreaktion werden Entz{\"u}ndungsmediatoren wie Histamin, Bradykinin, Serotonin und Lysophosphatids{\"a}ure (LPA) ausgesch{\"u}ttet und k{\"o}nnen durch die Aktivierung ihrer G-Protein gekoppelten Rezeptoren (GPCR) oder direkte Interaktion mit Ionenkan{\"a}len die nozizeptive Erregung beeinflussen. Durch Anwendung von RT-PCR und eines neu entwickelten Antik{\"o}rpers wurde die Ko-Expression von TRESK-Kan{\"a}len zusammen mit Kan{\"a}len der Transient-Receptor-Potential-Kationenkanalfamilie (TRP) und LPA-Rezeptoren in DRG-Neuronen nachgewiesen. Durch rekombinante Ko-Expression von TRESK-Kan{\"a}len und LPA2-Rezeptoren in Xenopus Oozyten konnte durch Zugabe von LPA eine fast 10-fache Aktivierung des basalen K+-Stromes erzielt werden. Die Auswertung der Dosis-Wirkungskurve ergab einen EC50-Wert von 0,2 µM LPA. Die LPA-induzierte TRESK-Stromaktivierung konnte durch die Verwendung des mutierten Kanals TRESK[PQAVAD] oder durch die Zugabe des Phospholipase C (PLC) Inhibitors U73122 verhindert werden. Dies zeigt die Beteiligung des PLC-Signalwegs und die Bindung von Calcineurin an den TRESK-Kanal bei der Stromaktivierung. TRESK ist das einzige Mitglied der K2P-Familie, das eine LPA-induzierte Aktivierung des Stromes zeigt. TREK- und TASK-1-Str{\"o}me werden durch LPA inhibiert. In DRG-Neuronen mit kleinem Durchmesser wird Nozizeption durch die Aktivierung von TRPV1-Kan{\"a}len durch Hitze oder Capsaicin, dem Inhaltsstoff des Chilis, und zus{\"a}tzlich durch die Substanz LPA verursacht. Ein weiteres Mitglied der TRP-Familie, der TRPA1-Kanal, ist bei der verst{\"a}rkten Nozizeption w{\"a}hrend einer Entz{\"u}ndung involviert. Werden TRESK- und TRP-Kan{\"a}le in Xenopus Oozyten ko-exprimiert, verursacht LPA gleichzeitig einen Kationeneinw{\"a}rts- wie auch -ausw{\"a}rtsstrom. Unter diesen Bedingungen verschob sich das Umkehrpotenzial in einen Bereich zwischen den Umkehrpotenzialen von Oozyten, die nur den K+-Kanal exprimieren und von Oozyten, die nur den unspezifischen Kationenkanal exprimieren. Durch diese Experimente konnte gezeigt werden, dass die LPA-induzierte Ko-Aktivierung von TRP-Kan{\"a}len und TRESK zu einer Begrenzung des exzitatorischen Effekts f{\"u}hren kann. Die DRG-{\"a}hnlichen F11-Zellen exprimieren keine TRESK-Kan{\"a}le. Sie sind in der Lage durch Strompulse Aktionspotenziale zu generieren. Mit TRESK transfizierte F11-Zellen zeigten eine Verschiebung des Umkehrpotenzials in negative Richtung, einen gr{\"o}ßeren Ausw{\"a}rtsstrom und den Verlust von spannungsgesteuerten Natriumkan{\"a}len. Auch hohe Strompulse konnten keine Aktionspotenziale mehr ausl{\"o}sen. Bei Spannungs-Klemme-Messungen von prim{\"a}ren DRG-Neuronen von TRESK[wt]-M{\"a}usen erh{\"o}hte sich der IKSO nach Zugabe von LPA um {\"u}ber 20 \%. Im Gegensatz dazu zeigten DRG-Neurone von TRESK[ko]-M{\"a}usen unter diesen Bedingungen eine leichte Hemmung des IKSO von etwa 10 \%. In Neuronen, die TRPV1 exprimieren, f{\"u}hrte LPA nicht nur zum Anstieg des IKSO, sondern auch zur Aktivierung eines Einw{\"a}rtsstromes (TRPV1). Im Vergleich dazu wurde in TRESK[ko]-Neuronen durch LPA nur der Einw{\"a}rtsstrom aktiviert. In Strom-Klemme-Experimenten f{\"u}hrte LPA-Applikation zur Entstehung von Aktionspotenzialen mit h{\"o}herer Frequenz in Zellen von TRESK[ko]-M{\"a}usen im Vergleich zu Zellen von TRESK[wt]-M{\"a}usen. Zus{\"a}tzlich wurde die Erregung, die durch Strompulse von 100 pA ausgel{\"o}st wurde, in den beiden Genotypen durch LPA unterschiedlich moduliert. Die Aktionspotenzialfrequenz in TRESK[wt]-Neuronen wurde gesenkt, in TRESK[ko]-Neuronen wurde sie erh{\"o}ht. Die vorliegende Arbeit zeigt, dass die Erregung nozizeptiver Neurone durch LPA aufgrund der Ko-Aktivierung der TRESK-Kan{\"a}le abgeschw{\"a}cht werden kann. Die Erregbarkeit von sensorischen Neuronen wird strak durch die Aktivit{\"a}t und Expression der TRESK-Kan{\"a}le kontrolliert. Deswegen sind TRESK-Kan{\"a}le gute Kandidaten f{\"u}r die pharmakologische Behandlung von Schmerzkrankheiten.}, subject = {Kaliumkanal}, language = {de} }