@phdthesis{Draeger2020, author = {Draeger, Simon}, title = {Rapid Two-Dimensional One-Quantum and Two-Quantum Fluorescence Spectroscopy}, doi = {10.25972/OPUS-19816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In den letzten zwei Jahrzehnten hat sich die koh{\"a}rente mehrdimensionale Femtosekunden- Spektroskopie zu einem leistungsstarken und vielseitigen Instrument zur Untersuchung der chemischen Dynamik einer Vielzahl von Quantensystemen entwickelt. Die Kombination von transienten Informationen, die der Anrege-Abrage-Spektroskopie entsprechen, mit Informationen zur Kopplung zwischen energetischen Zust{\"a}nden und der Systemumgebung erm{\"o}glicht einen umfassenden Einblick in atomare und molekulare Eigenschaften. Viele experimentelle 2D-Aufbauten verwenden den koh{\"a}renzdetektierten Ansatz, bei dem nichtlineare Systemantworten als koh{\"a}rente elektrische Felder emittiert und r{\"a}umlich getrennt von den Anregungspulsen detektiert werden. Als Alternative zu diesem experimentell anspruchsvollen Ansatz wurde die populationsbasierte 2D-Spektroskopie etabliert. Hier wird die koh{\"a}rente Information in den Phasen einer kollinearen Anregungspulsfolge codiert und aus inkoh{\"a}renten Signalen wie Fluoreszenz {\"u}ber Phase Cycling extrahiert. Grunds{\"a}tzlich kann durch die Verwendung von Fluoreszenz als Observable eine Sensitivit{\"a}t bis zum Einzelmolek{\"u}lniveau erreicht werden. Ziel dieser Arbeit war die Realisierung eines pulsformergest{\"u}tzten vollst{\"a}ndig kollinearen fluoreszenzdetektierten 2D-Aufbaus und die Durchf{\"u}hrung von Proof-of- Principle-Experimenten in der Fl{\"u}ssigphase. Dieser inh{\"a}rent phasenstabile und kompakte Aufbau wurde in Kapitel 3 vorgestellt. Der verwendete Pulsformer erm{\"o}glicht eine Amplituden- und Phasenmodulation von Schuss zu Schuss. Zwei verschiedene Arten von Weißlichtquellen wurden angewendet und hinsichtlich ihrer jeweiligen Vorteile f{\"u}r die 2D-Fluoreszenzspektroskopie bewertet. Eine Vielzahl von Artefaktquellen, die mit dem vorliegenden Aufbau auftreten k{\"o}nnen, wurden diskutiert und Korrekturschemata und Anweisungen zur Vermeidung dieser Artefakte bereitgestellt. In Kapitel 4 wurde der Aufbau anhand einer Vierpulssequenz mit Cresylviolett in Ethanol demonstriert. Es wurde ein detailliertes Datenerfassungs- und Datenanalyseverfahren vorgestellt, bei dem Phase Cycling zur Extraktion der nichtlinearen Beitr{\"a}ge verwendet wird. Abh{\"a}ngig vom Phase Cycling-Schema ist es m{\"o}glich, alle nichtlinearen Beitr{\"a}ge in einer einzigen Messung aufzudecken. Literaturbekannte Oszillationen von Cresylviolett w{\"a}hrend der Populationszeit konnten reproduziert werden. Aufgrund der Messung in einer Umgebung im Rotating Frame und einer 1 kHz Schuss-zu-Schuss Pulsinkrementierung war es m{\"o}glich, ein 2D-Spektrum f{\"u}r eine Populationszeit in 6 s zu erhalten. Eine Fehlerevaluierung hat gezeigt, dass eine zehnfache Mittelwertbildung (1 min) ausreicht, um eine mittlere quadratische Abweichung von < 0:05 gegen� uber einer 400-fachen Mittelwertbildung zu erhalten, was beweist, dass das verwendete Messschema gut geeignet ist. Die Realisierung des ersten experimentellen fluoreszenzdetektierten 2Q-2D-Experiments und der erste experimentelle Zugang zum theoretisch vorhergesagten 1Q-2Q-Beitrag wurden in Kapitel 5 vorgestellt. Zu diesem Zweck wurde eine Dreipulssequenz auf Cresylviolett in Ethanol angewendet und die experimentellen Ergebnisse wurden mit Simulationen eines einfachen Sechs-Level-Systems verglichen. Im Gegensatz zur koh{\"a}renzdetektierten 2Q-2D-Spektroskopie sind bei dem vorgestellten Aufbau keine nichtresonanten L{\"o}sungsmittelsignale und Streuungsbeitr{\"a}ge sichtbar und es ist kein zus{\"a}tzliches Phasing-Verfahren erforderlich. Durch eine Kombination aus Experimenten und systematischen Simulationen wurden Informationen {\"u}ber die Relaxation der L{\"o}sungsmittelh{\"u}lle und die Korrelationsenergie gewonnen. Auf der Basis von Simulationen wurden Effekte der Pfadausl{\"o}schung diskutiert, die darauf schließen lassen, dass die 1Q-2Q-2D-Spektroskopie m{\"o}glicherweise die quantitative Analyse f{\"u}r molekulare Systeme erleichtert, die eine starke nichtstrahlende Relaxation aus h{\"o}heren elektronischen Zust{\"a}nden aufweisen. Zusammenfassend ist es mit der vorgestellten Methode m{\"o}glich, alle nichtlinearen Beitr{\"a}ge mit einer schnellen Datenaufnahme und einem einfach einzurichtenden Aufbau zu erfassen. Die gezeigten Proof-of-Principle-Experimente stellen eine Erweiterung der 2D-Spektroskopie-Werkzeugpalette dar und bieten eine fundierte Grundlage f{\"u}r zuk{\"u}nftige Anwendungen wie mehrdimensionale Spektroskopie, mehrfarbige 2D-Spektroskopie oder die Kombination von simultanen Fl{\"u}ssig- und Gasphasen-2D-Experimenten.}, subject = {Fluoreszenzspektroskopie}, language = {en} }