@article{ZahoranovaLuxenhofer2021, author = {Zahoranov{\´a}, Anna and Luxenhofer, Robert}, title = {Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update}, series = {Advanced Healthcare Materials}, volume = {10}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.202001382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225833}, year = {2021}, abstract = {For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{EltamanyAbdelmohsenHaletal.2021, author = {Eltamany, Enas E. and Abdelmohsen, Usama Ramadan and Hal, Dina M. and Ibrahim, Amany K. and Hassanean, Hashim A. and Abdelhameed, Reda F. A. and Temraz, Tarek A. and Hajjar, Dina and Makki, Arwa A. and Hendawy, Omnia Magdy and AboulMagd, Asmaa M. and Youssif, Khayrya A. and Bringmann, Gerhard and Ahmed, Safwat A.}, title = {Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234058}, year = {2021}, abstract = {Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography-mass spectrometry (GC-MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2-p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents.}, language = {en} } @article{AbdElAzizElMaghrabyEwaldetal.2021, author = {Abd El-Aziz, Asmaa M. and El-Maghraby, Azza and Ewald, Andrea and Kandil, Sherif H.}, title = {In-vitro cytotoxicity study: cell viability and cell morphology of carbon nanofibrous scaffold/hydroxyapatite nanocomposites}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061552}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234037}, year = {2021}, abstract = {Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.}, language = {en} }