@phdthesis{Hein2004, author = {Hein, Silke}, title = {The survival of grasshoppers and bush crickets in habitats variable in space and time}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9140}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die zunehmende Nutzung von Landschaften f{\"u}hrt zu einer steigenden Fragmentierung sch{\"u}tzenswerter Fl{\"a}chen. Damit verbunden ist eine Zerschneidung von großen Populationen in Metapopulationen. In solchen F{\"a}llen bestimmt das Gleichgewicht zwischen Aussterben und Besiedlung von Habitaten die regionale {\"U}berlebenswahrscheinlichkeit von Arten. Um diese bestimmen, braucht man ein gutes Verst{\"a}ndnis der Habitatanspr{\"u}che der Arten, sowie Informationen {\"u}ber ihr Ausbreitungsverhalten. Ziel dieser Arbeit war es, geeignete Fl{\"a}chen f{\"u}r Heuschrecken in einer Landschaft identifizieren zu k{\"o}nnen, sowie einen Beitrag zur Quantifizierung der Erreichbarkeit einzelner Fl{\"a}chen durch Individuen zu leisten. Der erste Teil dieser Arbeit besch{\"a}ftigt sich mit der Quantifizierung der Habitateignung von Fl{\"a}chen f{\"u}r Heuschrecken. Dazu habe ich statistische Habitateignungsmodelle mittels logistischer Regression erstellt, evaluiert und validiert. Es zeigte sich, dass die Habitatwahl der Heuschrecken auf einer mittleren r{\"a}umlichen Skalenebene erfolgt. Dies steht mit der beobachteten Ausbreitungsdistanz der Tiere im Einklang. Neben dem nur grob klassifizierten Landschaftsfaktor „Biotoptyp" korrelieren vor allem strukturelle Faktoren sowie abiotische Faktoren mit dem Vorkommen der Heuschreckenarten. Bei der Bestimmung eines gemeinsamen Models f{\"u}r alle drei Heuschreckenarten erwies sich das Model der Art S. lineatus mit den Parametern Biotoptyp und Vegetationsh{\"o}he als am besten geeignet zur Vorhersage der Vorkommen der anderen Heuschreckenarten. Um zu testen, ob auch die Vorkommen von Arten unterschiedlicher Tiergruppen mittels eines gemeinsamen Modells vorhergesagt werden k{\"o}nnen, habe ich sowohl die Heuschreckenmodelle zur Prognose von Faltervorkommen getestet, als auch Modelle f{\"u}r Falter auf Heuschrecken {\"u}bertragen. Dabei erwiesen sich die Heuschreckenmodelle zur Prognose der anderen Arten weniger geeignet als das Modell f{\"u}r das Widderchen Z. carniolica in das der Anteil an geeignetem Habitat sowie die Vorkommen der beiden Saugpflanzen C. jacea und S. columbaria einfließen. Diese Art wird als standorttreu eingestuft und repr{\"a}sentiert damit auch die anderen Arten, die typisch f{\"u}r S{\"a}ume und Halbtrockenrasen sind. Die erh{\"o}hte Mobilit{\"a}t von Z. carniolica im Vergleich zu den Heuschrecken garantiert gleichzeitig auch die Erreichbarkeit aller geeigneten Fl{\"a}chen im Gebiet und damit ein Modell, das nur unwesentlich durch Zufallseffekte bei der Besiedlung beeinflusst wird. Neben der Habitatqualit{\"a}t/-quantit{\"a}t spielt vor allem der Austausch zwischen Fl{\"a}chen eine entscheidende Rolle f{\"u}r das {\"U}berleben der Metapopulation. Im zweiten Teil meiner Arbeit habe ich mich sowohl theoretisch als auch empirisch, mit dem Ausbreitungsverhalten von Heuschrecken besch{\"a}ftigt. In Freilandexperimenten konnte ich zeigen, dass die Annahme eines dichotomen Bewegungsverhaltens f{\"u}r Heuschrecken in einer realen Landschaft nicht zutrifft. Vielmehr wird die Bewegung in einer Fl{\"a}che besser als Kontinuum beschrieben das durch strukturelle Resistenz, Temperatur, Mortalit{\"a}tsrisiko und Ressourcenverf{\"u}gbarkeit bestimmt wird. Die jeweilige Kombination dieser Parameter veranlasst die Tiere dann zu einem entsprechenden Bewegungsmuster, das sich zwischen den beiden Extremen gerichteter und zuf{\"a}lliger Lauf bewegt. In Experimenten zum Grenzverhalten von Heuschrecken best{\"a}tigte sich dieses Ergebnis. F{\"u}r verschiedene Grenzstrukturen konnte ich unterschiedliche {\"U}bertrittswahrscheinlichkeiten nachweisen. Weiterhin konnte ich feststellen, dass Heuschrecken geeignete Habitate aus einer gewissen Entfernung detektieren k{\"o}nnen. Da das Ausbreitungsverhalten von Tieren in theoretischen Modellen eine wichtige Rolle spielt, k{\"o}nnen diese empirischen Daten zur Parametrisierung dieser Modelle verwendet werden. Zus{\"a}tzlich zum Einfluss des Laufmusters der Tiere auf die Erreichbarkeit geeigneter Habitate, zeigte sich in den von mir durchgef{\"u}hrten Simulationsstudien deutlich, dass der landschaftliche Kontext, in dem die Ausbreitung stattfindet, die Erreichbarkeit einzelner Habitate beeinflusst. Dieser Effekt ist zus{\"a}tzlich abh{\"a}ngig von der Mortalit{\"a}tsrate beim Ausbreitungsvorgang. Mit den Ergebnissen aus den Untersuchungen zur Habitateignung lassen sich die f{\"u}r Heuschrecken geeigneten Habitate in einer Landschaft identifizieren. Somit l{\"a}sst sich die potentielle Eignung einer Fl{\"a}che als Habitat, basierend auf Vorhersagen {\"u}ber die {\"A}nderung des Biotoptyps durch ein Managementverfahren, vorhersagen. Diese Information allein reicht aber nicht aus, um die regionale {\"U}berlebenswahrscheinlichkeit einer Art bestimmen zu k{\"o}nnen. Meine Untersuchungen zum Ausbreitungsverhalten zeigen deutlich, dass die Erreichbarkeit geeigneter Fl{\"a}chen von der r{\"a}umlichen Anordnung der Habitate und der Struktur der Fl{\"a}chen, die zwischen Habitaten liegen, abh{\"a}ngt. Zus{\"a}tzlich spielen individuenspezifische Faktoren wie Motivation und physiologische Faktoren eine ausschlaggebende Rolle f{\"u}r die Erreichbarkeit von geeigneten Fl{\"a}chen.}, subject = {Naturschutzgebiet Hohe Wann}, language = {en} } @article{BonteHovestadtPoethke2009, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans Joachim}, title = {Sex-specific dispersal and evolutionary rescue in metapopulations infected by male killing endosymbionts}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45351}, year = {2009}, abstract = {Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence. Results: We simulated host-endosymbiont metapopulation dynamics in an individual-based model, in which dispersal rates are allowed to evolve independently for the two sexes. Prominent male-biased dispersal emerges under conditions of low environmental stochasticity and high dispersal mortality. By applying a reshuffling algorithm, we show that kin-competition is a major driver of this evolutionary pattern because of the high within-population relatedness of males compared to those of females. Moreover, the evolution of sex-specific dispersal rescues metapopulations from extinction by (i) reducing endosymbiont fixation rates and (ii) by enhancing the extinction of endosymbionts within metapopulations that are characterized by low environmental stochasticity. Conclusion: Male killing endosymbionts induce the evolution of sex-specific dispersal, with prominent male-biased dispersal under conditions of low environmental stochasticity and high dispersal mortality. This male-biased dispersal emerges from stronger kin-competition in males compared to females and induces an evolutionary rescue mechanism.}, subject = {Metapopulation}, language = {en} } @article{BonteHovestadtPoethke2008, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans-Joachim}, title = {Male-killing endosymbionts: influence of environmental conditions on persistance of host metapopulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45344}, year = {2008}, abstract = {Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results: By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion: Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems.}, subject = {Metapopulation}, language = {en} } @article{PoethkeHovestadtMitesser2003, author = {Poethke, Hans-Joachim and Hovestadt, Thomas and Mitesser, Oliver}, title = {Local extinction and the evolution of dispersal rates: Causes and correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47718}, year = {2003}, abstract = {We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.}, subject = {Ausbreitung}, language = {en} } @article{HeisswolfReichmannPoethkeetal.2009, author = {Heisswolf, Annette and Reichmann, Stefanie and Poethke, Hans-Joachim and Schr{\"o}der, Boris and Obermaier, Elisabeth}, title = {Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47740}, year = {2009}, abstract = {Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.}, subject = {Fragmentierung}, language = {en} } @article{PoethkeHovestadt2002, author = {Poethke, Hans J. and Hovestadt, Thomas}, title = {Evolution of density-and patch-size-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49659}, year = {2002}, abstract = {Based on a marginal value approach, we derive a nonlinear expression for evolutionarily stable (ES) dispersal rates in a metapopulation with global dispersal. For the general case of density-dependent population growth, our analysis shows that individual dispersal rates should decrease with patch capacity and-beyond a certain threshold-increase with population density. We performed a number of spatially explicit, individual-based simulation experiments to test these predictions and to explore further the relevance of variation in the rate of population increase, density dependence, environmental fluctuations and dispersal mortality on the evolution of dispersal rates. They confirm the predictions of our analytical approach. In addition, they show that dispersal rates in metapopulations mostly depend on dispersal mortality and inter-patch variation in population density. The latter is dominantly driven by environmental fluctuations and the rate of population increase. These conclusions are not altered by the introduction of neighbourhood dispersal. With patch capacities in the order of 100 individuals, kin competition seems to be of negligible importance for ES dispersal rates except when overall dispersal rates are low.}, subject = {Metapopulation}, language = {en} } @phdthesis{Fronhofer2013, author = {Fronhofer, Emanuel Alexis}, title = {Beyond classical metapopulations: trade-offs and information use in dispersal ecology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85816}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {All animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context of metapopulations. This has allowed researchers to take into account the landscape level, e.g. for determining conservation measures. However, a majority of theses studies classically did not include dispersal evolution. Yet, it is well known that dispersal is subject to evolution and that this process may occur (very) rapidly, i.e. over short ecological time-scales. Studies that do take dispersal evolution into account, mostly focus on eco-evolutionary forces arising at the level of populations - intra-specific competition or Allee effects, for example - and at the level of landscapes - e.g. connectivity, patch area and fragmentation. Yet, relevant ecological and evolutionary forces can emerge at all levels of biological complexity, from genes and individuals to populations, communities and landscapes. Here, I focus on eco-evolutionary forces arising at the gene- and especially at the individual level. Combining individual-based modelling and empirical field work, I explicitly analyse the influence of mobility trade-offs and information use for dispersal decisions - i.e. individual level factors - during the three phases of dispersal - emigration, transfer and immigration. I additionally take into account gene level factors such as ploidy, sexual reproduction (recombination) and dominance. Mobility-fertility trade-offs may shape evolutionarily stable dispersal strategies and lead to the coexistence of two or more dispersal strategies, i.e. polymorphisms and polyphenisms. This holds true for both dispersal distances (chapter 3) and emigration rates (chapter 4). In sessile organisms - such as trees or corals - maternal investment, i.e. transgenerational trade-offs between maternal fertility and propagule dispersiveness, can be the cause of bimodal and fat-tailed dispersal kernels. However, the coexistence of two or more dispersal strategies may be critically dependent on gene level factors, such as ploidy or dominance (chapter 4). Passively dispersing individuals may realize such multimodal dispersal kernels by mixing different dispersal vectors. Active choice of these vectors allows to optimize the kernel. As most animals have evolved some kind of memory and sensory apparatus - chemical, acoustic or optical sensors - it is obvious that these capacities should be used for dispersal decisions. Chapter 5 explores the use of chemical cues for vector choice in passively dispersed animals. I find that the neotropical phoretic flower mites Spadiseius calyptrogynae non-randomly mix different dispersal vectors, i.e. one short- and one long-distance disperser, in order to achieve fat-tailed dispersal kernels. Such kernels allow an optimal exploitation of patchily distributed habitats. In addition, this strategy increases the probability of successful immigration as the short-distance dispersal vectors show directed dispersal towards suitable habitats. Results from individual-based simulations support and explain my empirical findings. The use of memory and sensory apparatus in dispersal is also the main topic of chapter 6 which strives to bridge the gap between dispersal and movement ecology. In this part of my thesis I develop a model of non-random, memory-based animal movement strategies. Extending the movement ecology paradigm of Nathan (2008a) I postulate that four elements may be relevant for the emergence of efficient movement strategies: perception, memory, inference and anticipation. Movement strategies including these four elements optimize search efficiency at two scales: within patches and between patches. This leads to a significantly increased search efficiency over a comparable area restricted search strategy. These four chapters are completed by a general analysis of metapopulation dynamics (chapter 2). I find that although the metapopulation concept is very popular in theoretical ecology, classical metapopulations can be predicted to be rare in nature, as suggested by lacking empirical evidence. This is especially the case when gene level factors, such as ploidy and sex, are taken into account. In summary, my work analyses the effects of ecological and evolutionary forces arising at the gene- and individual level on the evolution of dispersal and movement strategies. I highlight the importance of including these limiting factors, mechanisms and processes and show how they impact the evolution of dispersal in spatially structured populations. All chapters demonstrate that these forces may have dramatic effects on resulting ecological and evolutionary dynamics. If we intend to understand animal and plant dispersal or movement, it is crucial to include eco-evolutionary forces emerging at all levels of complexity, from genes to communities and landscapes. This endeavour is certainly not purely academic. Particularly nowadays, with rapidly changing landscape structures and anticipated drastic shifts of climatic zones due to global change, dispersal is a factor that cannot be overestimated.}, subject = {Metapopulation}, language = {en} }