@article{HindererShenRinguetteetal.2015, author = {Hinderer, Svenja and Shen, Nian and Ringuette, L{\´e}a-Jeanne and Hansmann, Jan and Reinhardt, Dieter P and Brucker, Sara Y and Davis, Elaine C and Schenke-Layland, Katja}, title = {In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold}, series = {Biomedical Materials}, volume = {10}, journal = {Biomedical Materials}, number = {3}, doi = {10.1088/1748-6041/10/3/034102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254074}, year = {2015}, abstract = {Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM.}, language = {en} } @article{WittmannSiebervonStengeletal.2016, author = {Wittmann, Katharina and Sieber, Cornel and von Stengel, Simon and Kohl, Matthias and Freiberger, Ellen and Jakob, Franz and Lell, Michael and Engelke, Klaus and Kemmler, Wolfgang}, title = {Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study}, series = {Clinical Interventions in Aging}, volume = {11}, journal = {Clinical Interventions in Aging}, doi = {10.2147/CIA.S116430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164930}, pages = {1697—1706}, year = {2016}, abstract = {Background: Sarcopenic obesity (SO) is characterized by a combination of low muscle and high fat mass with an additive negative effect of both conditions on cardiometabolic risk. The aim of the study was to determine the effect of whole-body electromyostimulation (WB-EMS) on the metabolic syndrome (MetS) in community-dwelling women aged ≥70 years with SO. Methods: The study was conducted in an ambulatory university setting. Seventy-five community-dwelling women aged ≥70 years with SO living in Northern Bavaria, Germany, were randomly allocated to either 6 months of WB-EMS application with (WB-EMS\&P) or without (WB-EMS) dietary supplementation (150 kcal/day, 56\% protein) or a non-training control group (CG). WB-EMS included one session of 20 min (85 Hz, 350 µs, 4 s of strain-4 s of rest) per week with moderate-to-high intensity. The primary study endpoint was the MetS Z-score with the components waist circumference (WC), mean arterial pressure (MAP), triglycerides, fasting plasma glucose, and high-density lipoprotein cholesterol (HDL-C); secondary study endpoints were changes in these determining variables. Results: MetS Z-score decreased in both groups; however, changes compared with the CG were significant (P=0.001) in the WB-EMS\&P group only. On analyzing the components of the MetS, significant positive effects for both WB-EMS groups (P≤0.038) were identified for MAP, while the WB-EMS group significantly differed for WC (P=0.036), and the WB-EMS\&P group significantly differed for HDL-C (P=0.006) from the CG. No significant differences were observed between the WB-EMS groups. Conclusion: The study clearly confirms the favorable effect of WB-EMS application on the MetS in community-dwelling women aged ≥70 years with SO. However, protein-enriched supplements did not increase effects of WB-EMS alone. In summary, we considered this novel technology an effective and safe method to prevent cardiometabolic risk factors and diseases in older women unable or unwilling to exercise conventionally.}, language = {en} }