@article{ClaussYanKuenzer2016, author = {Clauss, Kersten and Yan, Huimin and Kuenzer, Claudia}, title = {Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {5}, doi = {10.3390/rs8050434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180557}, year = {2016}, abstract = {Rice is an important food crop and a large producer of green-house relevant methane. Accurate and timely maps of paddy fields are most important in the context of food security and greenhouse gas emission modelling. During their life-cycle, rice plants undergo a phenological development that influences their interaction with waves in the visible light and infrared spectrum. Rice growth has a distinctive signature in time series of remotely-sensed data. We used time series of MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD13Q1 and MYD13Q1 and a one-class support vector machine to detect these signatures and classify paddy rice areas in continental China. Based on these classifications, we present a novel product for continental China that shows rice areas for the years 2002, 2005, 2010 and 2014 at 250-m resolution. Our classification has an overall accuracy of 0.90 and a kappa coefficient of 0.77 compared to our own reference dataset for 2014 and correlates highly with rice area statistics from China's Statistical Yearbooks (R2 of 0.92 for 2010, 0.92 for 2005 and 0.90 for 2002). Moderate resolution time series analysis allows accurate and timely mapping of rice paddies over large areas with diverse cropping schemes.}, language = {en} } @article{UllmannBuedelBaumhaueretal.2016, author = {Ullmann, Tobias and B{\"u}del, Christian and Baumhauer, Roland and Padashi, Majid}, title = {Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection}, series = {International Journal of Earth Science and Geophysics}, volume = {2}, journal = {International Journal of Earth Science and Geophysics}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147863}, pages = {007}, year = {2016}, abstract = {The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector.}, language = {en} } @article{GhazaryanRienowOldenburgetal.2021, author = {Ghazaryan, Gohar and Rienow, Andreas and Oldenburg, Carsten and Thonfeld, Frank and Trampnau, Birte and Sticksel, Sarah and J{\"u}rgens, Carsten}, title = {Monitoring of urban sprawl and densification processes in Western Germany in the light of SDG indicator 11.3.1 based on an automated retrospective classification approach}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {9}, issn = {2072-4292}, doi = {10.3390/rs13091694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236671}, year = {2021}, abstract = {By 2050, two-third of the world's population will live in cities. In this study, we develop a framework for analyzing urban growth-related imperviousness in North Rhine-Westphalia (NRW) from the 1980s to date using Landsat data. For the baseline 2017-time step, official geodata was extracted to generate labelled data for ten classes, including three classes representing low, middle, and high level of imperviousness. We used the output of the 2017 classification and information based on radiometric bi-temporal change detection for retrospective classification. Besides spectral bands, we calculated several indices and various temporal composites, which were used as an input for Random Forest classification. The results provide information on three imperviousness classes with accuracies exceeding 75\%. According to our results, the imperviousness areas grew continuously from 1985 to 2017, with a high imperviousness area growth of more than 167,000 ha, comprising around 30\% increase. The information on the expansion of urban areas was integrated with population dynamics data to estimate the progress towards SDG 11. With the intensity analysis and the integration of population data, the spatial heterogeneity of urban expansion and population growth was analysed, showing that the urban expansion rates considerably excelled population growth rates in some regions in NRW. The study highlights the applicability of earth observation data for accurately quantifying spatio-temporal urban dynamics for sustainable urbanization and targeted planning.}, language = {en} } @article{RieserVesteThieletal.2021, author = {Rieser, Jakob and Veste, Maik and Thiel, Michael and Sch{\"o}nbrodt-Stitt, Sarah}, title = {Coverage and Rainfall Response of Biological Soil Crusts Using Multi-Temporal Sentinel-2 Data in a Central European Temperate Dry Acid Grassland}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {16}, issn = {2072-4292}, doi = {10.3390/rs13163093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245006}, year = {2021}, abstract = {Biological soil crusts (BSCs) are thin microbiological vegetation layers that naturally develop in unfavorable higher plant conditions (i.e., low precipitation rates and high temperatures) in global drylands. They consist of poikilohydric organisms capable of adjusting their metabolic activities depending on the water availability. However, they, and with them, their ecosystem functions, are endangered by climate change and land-use intensification. Remote sensing (RS)-based studies estimated the BSC cover in global drylands through various multispectral indices, and few of them correlated the BSCs' activity response to rainfall. However, the allocation of BSCs is not limited to drylands only as there are areas beyond where smaller patches have developed under intense human impact and frequent disturbance. Yet, those areas were not addressed in RS-based studies, raising the question of whether the methods developed in extensive drylands can be transferred easily. Our temperate climate study area, the 'Lieberoser Heide' in northeastern Germany, is home to the country's largest BSC-covered area. We applied a Random Forest (RF) classification model incorporating multispectral Sentinel-2 (S2) data, indices derived from them, and topographic information to spatiotemporally map the BSC cover for the first time in Central Europe. We further monitored the BSC response to rainfall events over a period of around five years (June 2015 to end of December 2020). Therefore, we combined datasets of gridded NDVI as a measure of photosynthetic activity with daily precipitation data and conducted a change detection analysis. With an overall accuracy of 98.9\%, our classification proved satisfactory. Detected changes in BSC activity between dry and wet conditions were found to be significant. Our study emphasizes a high transferability of established methods from extensive drylands to BSC-covered areas in the temperate climate. Therefore, we consider our study to provide essential impulses so that RS-based biocrust mapping in the future will be applied beyond the global drylands.}, language = {en} } @article{RoeschPlank2022, author = {R{\"o}sch, Moritz and Plank, Simon}, title = {Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {5}, issn = {2072-4292}, doi = {10.3390/rs14051168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262232}, year = {2022}, abstract = {Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis).}, language = {en} }