@article{DembekBarquistBoinettetal.2015, author = {Dembek, Marcin and Barquist, Lars and Boinett, Christine J. and Cain, Amy K. and Mayho, Matthew and Lawley, Trevor D. and Fairweather, Neil F. and Fagan, Robert P.}, title = {High-throughput analysis of gene essentiality and sporulation in Clostridium difficile}, series = {mBio}, volume = {6}, journal = {mBio}, number = {2}, doi = {10.1128/mBio.02383-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143745}, pages = {e02383-14}, year = {2015}, abstract = {Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen.}, language = {en} } @article{BarquistMayhoCumminsetal.2016, author = {Barquist, Lars and Mayho, Matthew and Cummins, Carla and Cain, Amy K. and Boinett, Christine J. and Page, Andrew J. and Langridge, Gemma C. and Quail, Michael A. and Keane, Jacqueline A. and Parkhill, Julian}, title = {The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries}, series = {Bioinformatics}, volume = {32}, journal = {Bioinformatics}, number = {7}, doi = {10.1093/bioinformatics/btw022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189667}, pages = {1109-1111}, year = {2016}, abstract = {Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology.}, language = {en} }