@article{HackerHofHughesetal.1985, author = {Hacker, J{\"o}rg and Hof, H. and Hughes, C. and Goebel, W.}, title = {Salmonella typhimurium strains carrying hemolysin plasmids and cloned hemolysin. genes from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40309}, year = {1985}, abstract = {Like all other Salmonella typhimurium strains examined, the smooth variants SF1397 (L T2) and 1366 and also their semi-rough and rough derivatives are non-haemolytic. Nevertheless, two haemolysin (Hly) plasmids of E. coli belonging to the inc groups incFllI,lv (pSU316) and incIz (pHly152) were able to be introduced into these strains by conjugation and stably maintained. A considerable percentage of the Hly+ transconjugants obtained had lost parts of their O-side chains, a result of selection for the better recipient capability of « semi-rough» variants rather than the direct influence of the Hly+ plasmids themselves. In contrast to the incF1lI1V plasmid pSU316, which exhibited higher conjugation rates with rough recipients, the incIz plasmid pHly152 was accepted best by smooth strains. Transformation with cloned E. coli haemolysin (hly) determinant was inefficient ( <10-8) for smooth strains, but 102-103 times higher for rough recipients, and was increased by the use of Salmonella-modified DNA. The transform ants and transconjugants were relatively stable and showed the same haemolytic activity as the E. coli donor strains. The virulence of the Hly+ smooth, semi-rough and rough S. typhimurium strains was tested in two mouse models, and neither the mortality rate nor the ability to multiply within the mouse spleen was influenced by the hly determinants.}, language = {en} } @article{HackerSchrettenbrunnerSchroeteretal.1986, author = {Hacker, J{\"o}rg and Schrettenbrunner, A. and Schr{\"o}ter, G. and Schmidt, G. and D{\"u}vel, H. and Goebel, W.}, title = {Characterization of Escherichia coli wild-type strains by means of agglutination with antisera raised against cloned P-, S- and MS-fimbriae antigens, hemagglutination, serotyping and hemolysin-production}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72992}, year = {1986}, abstract = {E. coli stcains isolated from patients with urinary tcact infecrions (UTn very often possess mannose"sensitive (MS) and mannose-resistant (MR) adherence facmrs (fimbriae). According to their receptor specificity the mannose-resistant adhesins can be divided inm several types, P, S, M and X. We have cloned rhe determinants of rhree groups of UTI E. coli adhesins, MS, p and S, and prepared specific aorisera against the fimbriae antigens. 189 hernagglutination (HA+) -positive stcains, 96 fecal isolates and 93 strains isoJated from UTI . have been tesred with rhese specific antisera and further characterized by receptor specific : HA, HA parteras and further of rhe "common 0 serogroups" 01, 02, 04, 06, 07, 08, 018, ' 025, 075, most prevalenr in UTI, and hemolysin production. · 68 (73 \%) of the UTI srrains a.nd 50 (52\%) of the fecal isolates showed P-receptor specificiry; 16 (17\%) of the uropathogenic bacteria and 33 (34\%) of the fecal strains exhibited S, M or X-fimbriae antigens. 24\% of rhe P-hemagglutinating (P+) strains reacted wirb P (F8)-specific antiserum. In contrast, more than three quaner of the s+-srrains were agglutinated by S-specific antiserum. HA-pattern VJ and 018 amigen were found to be associared with P-fimbriae strains, wbereas HA-pattern V and VII and the 0 anrigens 02 (M-type), 06 and 018 (5-type) occurred most frequently in p- -strains. A high percentage of P-fimbriated strains showed mannose-sensitive hemagglurination and hemolysin production.}, subject = {Escherichia coli}, language = {en} } @article{HackerOttSchmidtetal.1986, author = {Hacker, J{\"o}rg and Ott, M. and Schmidt, G. and Hull, R. and Goebel, W.}, title = {Molecular cloning of the F8 fimbrial antigen from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59391}, year = {1986}, abstract = {The genetic determinant coding for the Pspecific F8 fimbriae was cloned from · the chromosome of the Escherichia coli wild-type strain 2980 (018: K5: H5: FlC, F8). The F8 determinant was further subcloned into the Pstl site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned Counterpart was demonstrated. The cloned F8 fimbri{\"a}e and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepi thellal cells. The cloned F8 determinant was weil expressed in a variety of host strains.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerUlmerFasskeetal.1987, author = {Hacker, J{\"o}rg and Ulmer, E. and Fasske, E. and Schmidt, G.}, title = {Isolation and characterization of coliphage Omega18A specific for Escherichia coli O18ac strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73001}, year = {1987}, abstract = {The bactedophage Q18A, specific for Escherichia coli 018ac srrains, was isolated frorn sewage. The results of host range and conjugation experiments showed that the sensitivity of bacteria to the phage is associated with rhe presence of 018ac antigens. With sorne of rhe 018 strains rhe phage Q18A produces clear Iysis on bacterial lawns only when applied at a high multiplicity and moreover the phage does not multiply. With rhe help of the phage Ql8A, E. coli 0 18ac strains could be divided inro rwo serologically clistinct subgroups called 018A and 018A1• E. coli strains belanging to the sugroup 0 ISAare sensitive to phage Q t8A wheteas bacteria of subgroup A1 are resistanr.}, subject = {Escherichia coli}, language = {en} } @article{SchmollHackerGoebel1987, author = {Schmoll, T. and Hacker, J{\"o}rg and Goebel, W.}, title = {Nucleotide sequence of the sfaA gene coding for the S fimbrial protein subunit of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59480}, year = {1987}, abstract = {The sfaA gene of the uropathogenic Escherichia coli 06 strain 536, which is responsible for the determination of the S fimbrial protein subunit, was sequenced. The structural gene codes for a polypeptide of 180 amino acids including a 24-residue N-terminal signal sequence. A size of 15.95 kDa was calculated for the processed SfaA protein. The nucleotide and deduced amino acid sequences show significant homology to those of the F1C fimbria and, to a lesser extent, of the mannose- sensitive hemagglutinating fimbria (FimA, PilA). Only week homology toP fimbriae subunits (F72 , Pap) was found.}, subject = {Infektionsbiologie}, language = {en} } @article{MunoaHackerJuarez1988, author = {Munoa, F. and Hacker, J{\"o}rg and Juarez, A.}, title = {Characterization of a chromosomal mutant that blocks hemolysin excretion in Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59534}, year = {1988}, abstract = {We analyzed an Escherichia coli strain which harbours a chromosomal mutation that blocks the hemolysin excretion. Compartmentation studies showed that hemolysin accumulates in the cytoplasm and not in the periplasm. The mutation did not affect the SDS-PAGE protein pattern of the outer membrane, although some alterations were apparent in the periplasmic protein pattern. The mutant strain, E. coli Hsb-1 also failed to export a cloned fimbrial adhesin. The mutation maps in the min. 3.5 of the E. coli genetic map.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerGadebergOrskov1989, author = {Hacker, J{\"o}rg and Gadeberg, Ole V. and Orskov, Ida}, title = {Role of alpha-Hemolysin for the in vitro Phagocytosis and intracellular killing of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73019}, year = {1989}, abstract = {The_role of a-hemolysin for the elimination of Eschericbia coli by phagocyres in vitro was investigated using sets of isogenic strains which included wild-type a -hemolyric srrains, derived strains with a reduced production of a-hemolysin and derived nonhemolytic strains. Phagocyrosis and intracellular killing of the bacteria by human blood granulocytes or monocytes were measured using growth inhibition rechniques. a-hemolytic strains were phagocytosed and killed ro a Jesser extent than isogenic strains with a reduced production of o:hemoJysin and isogenic nonhemolytic strains. The results obrained with granulocyres were similar to rhose obtained with monocyres although the elimination of bacteria by monocytes was less than that by granulocytes. These resulcs strongJy suggest that production of ahemolysin is a means by which E. coli counteracrs the activity of phagocytes by injuring these cells with the toxin.}, subject = {Escherichia coli}, language = {en} } @article{KrallmannWenzelOttHackeretal.1989, author = {Krallmann-Wenzel, U. and Ott, M. and Hacker, J{\"o}rg and Schmidt, G}, title = {Chromosomal mapping of genes encoding mannose-sensitive (type I) and mannose-resistant F8(P) fimbriae of Escherichia coli O18:K5:H5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59545}, year = {1989}, abstract = {DNA hybridization experiments demonstrated that the gene clusters encoding the F8 fimbriae (fei) as well as the type I fimbriae (pi/) exist in a single copy on the chromosome of E. coli 018:K5 strain 2980. In conjugation experiments with appropriate donors, the chromosomal site of these gene clusters was determined. The pil genes were mapped close to the gene clusters thr and Jeu controlling the biosynthesis of threonine and leucine, respectively. The fei genes were found to be located close to the galactose operon (gal) between the position 17 and 21 of the E. coli chromosomallinkage map.}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollMorschhaeuserOttetal.1990, author = {Schmoll, T. and Morschh{\"a}user, J. and Ott, M. and Ludwig, B. and Van Die, I. and Hacker, J{\"o}rg}, title = {Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesin determinant: nucleotide sequence of the genes sfaB, C, D, E, F.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59661}, year = {1990}, abstract = {The S fimbrial adhesin (sfa) determinant of E. co/i comprises nine genes situated on a stretch of 7.9 kilobases (kb) DNA. Here the nucleotide sequence of the genes sfa B and sfaC situated proximal to the main structural gene sfaA is described. Sfa-LacZ fusions show that the two genes are transcribed in opposite directions. The isolation of mutants in the proximal region of the sfa gene cluster, the construction of sfa-phoA gene fusions and subsequent transcomplementation sturlies indicated that the genes sfaB and sfaC play a role in regulation of the sfa determinant. ln addition the nucleotide sequence of the genes sfa D, sfa E and sfa F situated between the genes sfaA and sfaG responsible for S subunit proteins, were determined. lt is suggested that these genes are involved in transport and assembly of fimbrial subunits. Thus the entire genetic organization of the sfa determinant is presented and compared with the gene clusters coding for P fimbriae (pap), F1 C fimbriae (foc) and type I fimbriae ( fim). The evolutionary relationship of fimbrial adhesin determinants is discussed.}, subject = {Infektionsbiologie}, language = {en} } @article{OttHacker1991, author = {Ott, M. and Hacker, J{\"o}rg}, title = {Analysis of the variability of S fimbriae expression in an Escherichia coli pathogen.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59695}, year = {1991}, abstract = {The uropathogenic Escherichia coli wiJd..:type strain 536 produces S-fimbriae, P-related fimbriae and type I fimbriae. Using immuno-colony dot and ELISA techniques, variants were detected showing an increased degree of S-fimbrial production. It was demonstrated by itrtmunofluorescence microscopy that in noimal (wild-type) and hyperS- fimbriated E. coli populaiions non-fimbriated cells also · exist, and that the percentage of Sfinibrlated and non-fimbriated bacteria was roughly identica1 in either population. Hyper-Sfimbriated variants could be stably maintained. The transition from wild-type to hyper-S-fimbriation, which occurs spontaneously, is markedly higher than vice versa. Southern blot analysis of the S fimbrial adhesin (sfa) determinants of normal and hyper-fimbriated strains revealed no marked difference in the gene structure.}, subject = {Infektionsbiologie}, language = {en} } @article{VanDieKramerHackeretal.1991, author = {Van Die, I. and Kramer, C. and Hacker, J{\"o}rg and Bergmans, H. and Jongen, W. and Hoekstra, W.}, title = {Nucleotide sequence of the genes coding for minor fimbrial subunits of the F1C fimbriae of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40353}, year = {1991}, abstract = {F 1 C fimbriae allow uropathogenic Escherichia coli to adhere to specific epithelial surfaces. This adhesive property is probably due to the presence of minor fimbrial components in F1C fimbriae. The foe gene cluster encoding F1C fimbriae has been cloned, as described previously. Here we present the nucleotide sequence (2081 bp) coding for the F 1 C minor fimbria I subunits. The structural genes code for polypeptides of 175 (FocF), 166 (FocG), and 300 (FocH) amino acids. The deduced amino acids of the F 1 C minor subunits were compared with the reported sequences of the minor subunits of other types of fimbriae. The data show that the Foc minor subunits are highly homologous to the corresponding Sfa proteins, whereas homology to the minor subunits of type 1 and P fimbriae is much lower.}, language = {en} } @article{SchrotenWolskePlogmannetal.1991, author = {Schroten, Horst and Wolske, Anja and Plogmann, Ricarda and Hanisch, Franz-Georg and Hacker, J{\"o}rg and Uhlenbr{\"u}ck, Gerhard and Wahn, Volker}, title = {Binding of cloned S-fimbriated E. coli to human buccal epithelial cells-different inhibition of binding by neonatal saliva and adult saliva.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86291}, year = {1991}, abstract = {Investigations were carried out on the adhesion of cloned S-fimbriated E. coli, labelled with fluoresceinisothiocyanate (FITC) to human buccal epithelial cells. Fluorescence microscopic analysis revealed binding of bacteria to 75-95\% of epithelial cells. Inhibition experiments with fetuin, a 1-acid glycoprotein and N-acetyl neuraminic acid confirmed the specificity of bacterial binding to sialoglycoproteins. Further studies using saliva as an inhibitor resulted in a 4-5 times stronger binding inhibition by newborn saliva in comparison to adult saliva coinciding with a 4-5 times higher content of total N-acetyl neuraminic acid in samples of newborn saliva. In Western blot analysis sialoglycoprotein bands with a molecular weight >200 kD reacting with wheat germ agglutinin (WGA), were only identified in samples of newborn saliva. These bands are classified as mucins on account of molecular weight and staining. These data suggest that saliva mucins could represent a major defense mechanism against bacterial infections at a stage of ontogeny where the secretory IgAsystem is not yet developed.}, subject = {Escherichia coli}, language = {en} } @article{ParkkinenHackerKorhonen1991, author = {Parkkinen, Jaakko and Hacker, J{\"o}rg and Korhonen, Timo K.}, title = {Enhancement of tissue plasminogen activator-catalyzed plasminogen activation by Escherichia coli S fimbriae associated with neonatal septicaemia and meningitis.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71566}, year = {1991}, abstract = {The effect of Escherichia coli strains isolated from blood and cerebrospinal fluid of septic infants on plasminogen activation was studied. These strains typically carry a filamentous surface protein, S fimbria, that has formerly been shown to bind to endothelial cells and interact with plasminogen. The bacteria effectively promoted plasminogen activation by tissue plasminogen activator (t-PA) which was inhibited by e-aminocaproic acid. A recombinant strain expressing S fimbriae accelerated t-PAcatalyzed plasminogen activation to a similar extent as did the wild-type strains whereas the nonfimbriate recipient strain had no effect. After incubation with t-PA and plasminogen, the S-fimbriate strain displayed bacterium-bound plasmin activity whereas the nonfimbriate strain did not. Bacterium-associated plasmin generation was also observed with a strain expressing mutagenized S fimbriae that Iack the cell-binding subunit SfaS but not with a strain lacking the major subunit SfaA. Both t-PA and plasminogen bound to purified S fimbriae in a lysine-dependent manner and purified S fimbriae accelerated t-PA-catalyzed plasminogen activation. The results indicate that E. coli S fimbriae form a complex with t-PA and plasminogen which enhances the rate of plasminogen activation and generates bacterium-bound plasmin. This may promote bacterial invasion and persistence in tissues and contribute to the systemic activation of fibrinolysis in septicaemia.}, subject = {Escherichia coli}, language = {en} } @article{TschaepeBenderOttetal.1992, author = {Tsch{\"a}pe, Helmut and Bender, Larisa and Ott, Manfred and Wittig, Walter and Hacker, J{\"o}rg}, title = {Restriction fragments length polymorphism and virulence pattern of the veterinary pathogen Escherichia coli O139:K82:H1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86131}, year = {1992}, abstract = {Escherichia coli 0139: K82: H1 strains originating from outbreaks and single cases of oedema disease in pigs were characterized by their genomic restriction fragment length polymorphism (RFLP), their virulence pattern, and by the occurrence as well as the genomic distribution of the determinants for hemolysin (hly) and verotoxins (shiga-like toxins; sltI, sltII). Whereas the RFLPs revealed considerable variation among the E. coli 0139: K82: H1 isolates depending the origin and epidemic source of the strains, the virulence gene slt II was found to be present in nearly all strains in a particular chromosomal region. Similar to RFLPs, the plasmid profiles are useful for epidemiological analysis.}, subject = {Escherichia coli}, language = {en} } @article{HackerOttBlumetal.1992, author = {Hacker, J{\"o}rg and Ott, Manfred and Blum, Gabriele and Marre, Reinhard and Heesemann, J{\"u}rgen and Tsch{\"a}pe, Helmut and Goebel, Werner}, title = {Genetics of Escherichia coli uropathogenicity: Analysis of the O6:K15:H31 isolate 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71578}, year = {1992}, abstract = {E. coli strain 536 (06: K15: H31) isolated from a case of acute pyelonephritis, expresses S-fimbrial adhesins, P-related fimbriae, common type I fimbriae, and hemolysins. The respective chromosomally encoded determinants were cloned by constructing a genomic library of this strain. Furthermore, the strain produces the iron uptake substance, enterocheline, damages HeLa cells, and behaves in a serum-resistant mode. Genetic analysis of spontaneously arising non-hemolytic variants revealed that some of the virulence genes were physically linked to large unstable DNA regions, termed "pathogenicity islands", which were mapped in the respective positions on the E. coli K-12linkage map. By comparing the wild type strain and mutants in in vitro and in vivo assays, virulence features have been evaluated. In addition, a regulatory cross talk between adhesin determinants was found for the wild-type isolate. This particular mode of virulence regulation is missing in the mutant strain.}, subject = {Escherichia coli}, language = {en} } @article{MorschhaeuserVetterKorhonenetal.1993, author = {Morschh{\"a}user, Joachim and Vetter, Viktoria and Korhonen, Timo and Uhlin, Bernt Eric and Hacker, J{\"o}rg}, title = {Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86140}, year = {1993}, abstract = {S fimbriae are able to recognize receptor molecules containing sialic acid and are produced by pathogenic E. coli strains causing urinary tract infection and menigitis. In order to characterize the corresponding genetic determinant, termed S fimbrial adhesin ( sfa) gene duster, we have cloned the S-specific genes from a urinary pathogen and from a meningitis isolate. Nine genes are involved in the production of S fimbriae, two of these, sfaB and sfaC code for regulatory proteins being necessary for the expression of S fimbriae. Two promoters, PB and Pc, are located in front of these genes. Transcription of the sfa determinant is influenced by activation of the promotersvia SfaB and SfaC, the action of the H-NS protein and an RNaseE-specific mRNA processing. In addition, a third promoter, P A• located in front of the major subunit gene sfaA, can be activated under special circumstances. Four genes of the sfa determinant code for the subunit-specific proteins, SfaA (16 kda), SfaG (17 kda), SfaS (14 kda) and SfaH (29 kda). It was demonstrated that the protein SfaA is the major subunit protein while SfaS is identical to the sialic-acid-specific adhesin of S fimbriae. The introduction of specific mutations into sfaS revealed that a region of six amino acids of the adhesin which includes two lysine and one arginine residues is involved in the receptor specific interaction of S fimbriae. Additionally, it has been shown that SfaS is necessary for the induction of fimbriation while SfaH plays a role in the stringency of binding of S fimbriae to erythrocytes.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Grozdanov2004, author = {Grozdanov, Lubomir Assenov}, title = {Analysis of the genome organization and fitness traits of non-pathogenic Escherichia coli strain Nissle 1917 (O6:K5:H1)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9304}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In the last years more than one hundred microbial genomes have been sequenced, many of them from pathogenic bacteria. The availability of this huge amount of sequence data enormously increases our knowledge on the genome structure and plasticity, as well as on the microbial diversity and evolution. In parallel, these data are the basis for the scientific "revolution" in the field of industrial and environmental biotechnology and medical microbiology - diagnostics and therapy, development of new drugs and vaccines against infectious agents. Together with the genomic approach, other molecular biological methods such as PCR, DNA-chip technology, subtractive hybridization, transcriptomics and proteomics are of increasing importance for research on infectious diseases and public health. The aim of this work was to characterize the genome structure and -content of the probiotic Escherichia coli strain Nissle 1917 (O6:K5:H31) and to compare these data with publicly available data on the genomes of different pathogenic and non-pathogenic E. coli strains and other closely related species. A cosmid genomic library of strain Nissle 1917 was screened for clones containing the genetic determinants contributing to the successful survival in and colonization of the human body, as well as to mediate this strain's probiotic effect as part of the intestinal microflora. Four genomic islands (GEI I-IVNissle 1917) were identifed and characterized. They contain many known fitness determinants (mch/mcm, foc, iuc, kps, ybt), as well as novel genes of unknown function, mobile genetic elements or newly identified putative fitness-contributing factors (Sat, Iha, ShiA-homologue, Ag43-homologues). All islands were found to be integrated next to tRNA genes (serX, pheV, argW and asnT, respectively). Their structure and chromosomal localization closely resembles those of analogous islands in the genome of uropathogenic E. coli strain CFT073 (O6:K2(?):H1), but they lack important virulence genes of uropathogenic E. coli (hly, cnf, prf/pap). Evidence for instability of GEI IINissle 1917 was given, since a deletion event in which IS2 elements play a role was detected. This event results in loss of a 30 kb DNA region, containing important fitness determinants (iuc, sat, iha), and therefore probably might influence the colonization capacity of Nissle 1917 strain. In addition, a screening of the sequence context of tRNA-encoding genes in the genome of Nissle 1917 was performed to identify genome wide potential integration sites of "foreign" DNA. As a result, similar "tRNA screening patterns" have been observed for strain Nissle 1917 and for the uropathogenic E. coli O6 strains (UPEC) 536 and CFT073. I. Summary 4 The molecular reason for the semi-rough phenotype and serum sensitivity of strain Nissle 1917 was analyzed. The O6-antigen polymerase-encoding gene wzy was identified, and it was shown that the reason for the semi-rough phenotype is a frame shift mutation in wzy, due to the presence of a premature stop codon. It was shown that the restoration of the O side-chain LPS polymerization by complementation with a functional wzy gene increased serumresistance of strain Nissle 1917. The results of this study show that despite the genome similarity of the E. coli strain Nissle 1917 with the UPEC strain CFT073, the strain Nissle 1917 exhibits a specific set of geno- and phenotypic features which contribute to its probiotic action. By comparison with the available data on the genomics of different species of Enterobacteriaceae, this study contributes to our understanding of the important processes such as horizontal gene transfer, deletions and rearrangements which contribute to genome diversity and -plasticity, and which are driving forces for the evolution of bacterial variants. At last, the fim, bcs and rfaH determinats whose expression contributes to the mutlicellular behaviour and biofilm formation of E. coli strain Nissle 1917 have been characterized.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Schneider2005, author = {Schneider, Gy{\"o}rgy}, title = {Studies on the architecture and on transferability of pathogenicity islands of uropathogenic Escherichia coli strain 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14231}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The establishment of genomic approaches including the sequence determination of complete bacterial genomes started a new era in microbiological research. Since then more than two hundred prokaryotic and eukaryotic genomes have been completely sequenced, and there are additional complete genome projects including different bacterial species and strains in progress (http://www.tigr.org, http://www.sanger.ac.uk). The continously growing amount of bacterial DNA sequence information gives us also the possibility to gain deeper insight into bacterial pathogenesis. With the help of comparative genomics, microbiological research can focus on those DNA sequences that are present in pathogenic bacteria but are absent in non-pathogenic strains. With this knowledge and with the help of molecular biological methods such as PCR,DNA-chip technology, subtractive hybridisation, transcriptomics and proteomics we can analyse in detail what makes a particular bacterial strain pathogenic. This knowledge also gives us the possibility to develop new vaccines, therapeutic approaches or diagnostic tools. The aim of this work was the structural and functional analysis of DNA regions of uropathogenic Escherichia coli strain 536 that belong to the flexible E. coli gene pool. The first part of this thesis focused on the identification and structural characterisation of pathogenicity island V of strain 536 (PAI V536). PAI V536 is integrated at the pheV tRNA gene at 64 minutes of the E. coli K-12 chromosome. In addition to the intact pheV tRNA gene, a truncated copy ('pheV) that represents the last 22 bp of this gene's 3'-end was identified 49 kb downstream of pheV on PAI V536. The analysis of the DNA sequence flanked by pheV and 'pheV revealed characteristics that are typical of PAIs. This DNA region exhibits homology to IS-elements and prophages and also comprises determinants coding for the Pix fimbriae, a phosphoglycerate transport system, an autotransporter, as well as for hypothetical proteins. Downstream of 'pheV, the K15 capsule determinant (kpsK15) of this strain is located. Structural analysis of the 20-kb kpsK15 locus revealed a so far unknown genetic organisation indicative of recombination events between a group 2 and group 3 capsule gene cluster. Downstream of the capsule determinant, the genes encoding a type II secretion system (general secretion pathway -GSP) are located on PAI V536. The K15 capsule locus was functionally characterized. Specific inactivation of each of the regions 1 to 3 of the kpsK15 gene cluster, and the use of a K15 capsule-specific antiserum demonstrated that this determinant is the functional K15 capsule locus of strain 536. It has been shown in an experimental murine model of ascending urinary tract infection with suckling mice that the K15 capsule contributes to urovirulence. Interestingly, the K15 capsule is not involved in serum resistance of strain 536. Inactivation of the PAI V536-encoded type II secretion system excluded a role of this general secretion pathway for capsule biosynthesis and virulence of strain 536 in the murine ascending urinary tract infection model. In the second part of the thesis, the transferability of PAIs was further investigated. Using PAI II536 as a model, mobilisation of this island from strain 536 into suitable recipient strains was investigated. For this purpose, an antibiotic resistance cassette, the R6K origin of replication as well as plasmid pGP704 carrying the mobilisation region of plasmid RP4 have been inserted into PAI II536. Transformation with the helper plasmid RP4, resulted a derivative of strain 536 that was used as a donor for conjugation experiments, while for recipient the pir + laboratory strain SY327 was used. After deletion the circularised PAI II536 was mobilised with the help of the conjugative helper plasmid (RP4) into the recipient laboratory strain SY327. The frequency of this event was about 10-8. It was also demonstrated that in the transconjugant strains the mobilized PAI II536 could be permanently present as a circular form and also can be integrated into the chromosome at the same chromosomal insertion site (leuX) as in the donor strain 536. Furthermore, after mobilisation and chromosomal integration of PAI II536 it was possible to remobilise this PAI back to a PAI II536-negative derivative of strain 536. The results obtained in this thesis increase our knowledge of the structure and function of a pathogenicity island of uropathogenic E. coli strain 536 and shed some light on the mechanisms contributing to genome plasticity and evolution of pathogenic E. coli variants.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Mueller2005, author = {M{\"u}ller, Claudia Maria}, title = {Studies on the Role of Histone-like Proteins in Gene Regulation in Uropathogenic Escherichia coli Isolate 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this study, the role of histone-like proteins in gene regulation in uropathogenic Escherichia coli isolate 536 was monitored. The histone-like nucleoid structuring protein H-NS is a global regulator in Escherichia coli that has been intensively studied in non-pathogenic strains. No comprehensive study on the role of H-NS and it's homolog StpA on gene expression in a pathogenic E. coli strain has been carried out so far. Moreover, we identified a third, so far uncharacterized member of the H-NS-like protein family in uropathogenic E. coli isolate 536, which was designated Hlp (H-NS-like protein). Hlp is a 134-amino acid protein, which shares 58 \% sequence identity with H-NS. The gene coding for the Hlp protein, hlp, is found in several uropathogenic E. coli variants, but not in non-pathogenic E. coli K-12. In UPEC strains 536 and CFT073, Hlp is encoded on a possibly horizontally acquired 23-kb genomic region inserted into the serU locus. Studies on hlp transcription revealed, that the gene is transcribed monocistronically from a single promoter and that expression is repressed by H-NS. Purified Hlp protein was binding to its own and to the hns promoter, thereby mediating negative auto- and crossregulation. Furthermore, Hlp and H-NS were directly interacting, resulting in the formation of stable heteromers. Complementation studies with hns mutant strains in a K-12 background revealed that the Hlp protein had in vivo activity, being able to complement the lack of H-NS in terms of motility, growth, and repression of the proU, bgl, and clyA genes. When analyzing the role of the histone-like proteins in expression of virulence-associated genes by using DNA arrays and classical phenotypic assays, most of the observed effects were mediated by the H-NS protein alone. Expression profiling revealed that transcript level of more than 500 genes was affected by an hns mutation, resulting in increased expression of alpha-hemolysin, fimbriae and iron-uptake systems, as well as genes involved in stress adaptation. Furthermore, several other putative virulence factors were found to be part of the H-NS regulon. On the other hand, no effect of StpA alone was observed. An hns stpA double mutant, however, exhibited a distinct gene expression pattern that differed in great parts from that of the hns single mutant. This suggests a direct interaction between the two homologs and the existence of distinct regulons of H-NS and an H-NS/StpA heteromeric complex. Although the H-NS protein has - either as homomer or in complex with StpA - a marked impact on gene expression in pathogenic E. coli strains, its effect on urovirulence is ambiguous. At a high infection dose, hns mutants accelerate lethality in murine UTI and sepsis models relative to the wild type, probably due to increased production of alpha-hemolysin. At lower infectious dose, however, mutants lacking H-NS are attenuated through their impaired growth rate, which can only partially be compensated by the higher expression of numerous virulence factors. As seen with StpA, an hlp single mutant did not exhibit a notable phenotype under standard growth conditions. A severe growth defect of hns hlp double mutants at low temperatures, however, suggests a biological relevance of H-NS/Hlp heteromers under certain circumstances. Furthermore, these mutants expressed more capsular polysaccharide and curli fimbriae, thereby indicating a distinct role of H-NS and Hlp in regulation of these surface structures. The H-NS paralogs Hlp and StpA also modulated H-NS-mediated regulation of fimbrial adhesins, and are oppositely required for normal growth at low or high temperatures, respectively. Finally, expression levels of the three histone-like proteins H-NS, StpA and Hlp itself varied with different temperatures, thereby suggesting a flexible composition of the nucleoid-associated protein pool. Hence, we propose that the biological role of Hlp and StpA does not rely on a distinct function of the single protein, but rather on their interaction with the global regulator H-NS.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Zdziarski2008, author = {Zdziarski, Jaroslaw Maciej}, title = {Bacterial Genome Plasticity and its Role for Adaptation and Evolution of Asymptomatic Bacteriuria (ABU) Escherichia coli Strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32879}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Asymptomatic bacteriuria (ABU) represents the long term bacterial colonization of the urinary tract, frequently caused by Escherichia coli (E. coli), without typical symptoms of a urinary tract infection (UTI). To investigate characteristics of ABU E. coli isolates in more detail, the geno- and phenotypes of eleven ABU isolates have been compared. Moreover, consecutive in vivo re-isolates of the model ABU strain 83972 were characterized with regard to transcriptomic, proteomic and genomic alterations upon long term in vivo persistence in the human bladder. Finally, the effect of the human host on bacterial adaptation/evolution was assessed by comparison of in vitro and in vivo-propagated strain 83972. ABU isolates represent a heterologous group of organisms. The comparative analysis of different ABU isolates elucidated the remarkable genetic and phenotypic flexibility of E. coli isolates. These isolates could be allocated to all four major E. coli phylogenetic lineages as well as to different clonal groups. Accordingly, they differed markedly in genome content, i.e., the genome size as well as the presence of typical UPEC virulence-associated genes. Multi locus sequence typing suggested that certain ABU strains evolved from UPEC variants that are able to cause symptomatic UTI by genome reduction. Consequently, the high E. coli genome plasticity does not allow a generalized view on geno- and phenotypes of individual isolates within a clone. Reductive evolution by point mutations, DNA rearrangements and deletions resulted in inactivation of genes coding for several UPEC virulence factors, thus supporting the idea that a reduced bacterial activation of host mucosal inflammation promotes the ABU lifestyle of these E. coli isolates. Gene regulation and genetic diversity are strategies which enable bacteria to live and survive under continuously changing environmental conditions. To study adaptational changes upon long term growth in the bladder, consecutive re-isolates of model ABU strain 83972 derived from a human colonisation study and from an in vitro long term cultivation experiment were analysed with regard to transcriptional changes and genome rearrangements. In this context, it could be demonstrated that E. coli, when exposed to different host backgrounds, is able to adapt its metabolic networks resulting in an individual bacterial colonisation strategy. Transcriptome and proteome analyses demonstrated distinct metabolic strategies of nutrients acquisition and energy production of tested in vivo re-isolates of strain 83972 that enabled them to colonise their host. Utilisation of D-serine, deoxy- and ribonucleosides, pentose and glucuronate interconversions were main up-regulated pathways providing in vivo re-isolates with extra energy for efficient growth in the urinary bladder. Moreover, this study explored bacterial response networks to host defence mechanisms: The class III alcohol dehydrogenase AdhC, already proven to be involved in nitric oxide detoxification in pathogens like Haemophilus influenzae, was shown for the first time to be employed in defending E. coli against the host response during asymptomatic bacteriuria. Consecutive in vivo and in vitro re-isolates of strain 83972 were also analysed regarding their genome structure. Several changes in the genome structure of consecutive re-isolates derived from the human colonisation study implied the importance of bacterial interactions with the host during bacterial microevolution. In contrast, the genome structure of re-isolates from the in vitro long term cultivation experiment, where strain 83972 has been propagated without host contact, was not affected. This suggests that exposure to the immune response promotes genome plasticity thus being a driving force for the development of the ABU lifestyle and evolution within the urinary tract.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Bauchart2010, author = {Bauchart, Philippe Michel Paul}, title = {Evaluation of the Zoonotic Risk of Escherichia coli Strains involved in Extraintestinal Infections of Humans and Animals. Characterization of New Virulences Factors in ExPEC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48848}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Avian pathogenic Escherichia coli (APEC) represent a subset of the so-called extraintestinal pathogenic Escherichia coli (ExPEC) pathotype that can cause various extraintestinal infections in humans and animals. APEC are the causative agent of localized colibacillosis or systemic infection in poultry. In this latter case, the syndrome starts as an infection of the upper respiratory tract and develops into a systemic infection. Generally, ExPEC are characterized by a broad variety of virulence-associated factors that may contribute to pathogenesis. Major virulence factors, however, that clearly define this pathotype, have not been identified. Instead, virulence-associated genes of ExPEC and thus also of APEC could be used in a mix-and-match-fashion. Both pathotypes could not be clearly distinguished by molecular epidemiology, and this suggested a hypothetical zoonotic risk caused by APEC. Accordingly, the main scientific question of this study was to characterize common traits as well as differences of APEC and human ExPEC variants that could either support the possible zoonotic risk posed by these pathogenic E. coli strains or indicate factors involved in host specificity. Comparative genomic analysis of selected APEC and human ExPEC isolates of the same serotype indicated that these variants could not be clearly distinguished on the basis of (i) general phenotypes, (ii) phylogeny, (iii) the presence of typical ExPEC virulence genes, and (iv) the presence of pathoadaptive mutations. Allelic variations in genes coding for adhesins such as MatB and CsgA or their regulators MatA and CsgD have been observed, but further studies are required to analyze their impact on pathogenicity. On this background, the second part of this thesis focused on the analysis of differences between human ExPEC and APEC isolates at the gene expression level. The analysis of gene expression of APEC and human ExPEC under growth conditions that mimick their hosts should answer the question whether these bacterial variants may express factors required for their host-specificity. The transcriptomes of APEC strain BEN374 and human ExPEC isolate IHE3034 were compared to decipher whether there was a specific or common behavior of APEC and human ExPEC, in response to the different body temperatures of man (37°C) or poultry (41°C). Only a few genes were induced at 41 °C in each strain relative to growth at 37 °C. The group of down-regulated genes in both strains was markedly bigger and mainly included motility and chemotaxis genes. The results obtained from the transcriptome, genomic as well as phenotypic comparison of human ExPEC and APEC, supports the idea of a potential zoonotic risk of APEC and certain human ExPEC variants. In the third part of the thesis, the focus was set on the characterization of Mat fimbriae, and their potential role during ExPEC infection. Comparison of the mat gene cluster in K-12 strain MG1655 and O18:K1 isolate IHE3034 led to the discovery of differences in (i) DNA sequence, (ii) the presence of transcriptional start and transcription factor binding sites as well as (iii) the structure of the matA upstream region that account for the different regulation of Mat fimbriae expression in these strains. A negative role of the H-NS protein on Mat fimbriae expression was also proven at 20 °C and 37 °C by real-time PCR. A major role of this fimbrial adhesin was demonstrated for biofilm formation, but a significant role of Mat fimbriae for APEC in vivo virulence could not yet be determined. Interestingly, the absence of either a functional matA gene or that of the structural genes matBCDEF independently resulted in upregulation of motility in E. coli strains MG1655 and IHE3034 by a so far unknown mechanism. In conclusion, the results of this thesis indicate a considerable overlap between human and animal ExPEC strains in terms of genome content and phenotypes. It becomes more and more apparent that the presence of a common set of virulence-associated genes among ExPEC strains as well as similar virulence gene expression patterns and phylogenetic backgrounds indicate a significant zoonotic risk of avian-derived E. coli isolates. In addition, new virulence factors identified in human ExPEC may also play a role in the pathogenesis of avian ExPEC.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Seo2012, author = {Seo, Ean Jeong}, title = {Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der probiotische Escherichia coli Stamm Nissle 1917 (EcN) ist eines der wenigen Probiotika, die als aktive Komponente eines Medikaments in mehreren L{\"a}ndern zugelassen sind. Am besten ist die Wirksamkeit des EcN f{\"u}r die Remissionserhaltung von an Colitis Ulcerosa leidenden Patienten dokumentiert. Diese F{\"a}higkeit ist vermutlich darauf zur{\"u}ckzuf{\"u}hren, dass EcN in der Lage ist die Produktion des humanen beta-Defensins 2 (HBD2) mittels seiner Flagelle zu Induzieren. In dieser Studie wurden rekombinante EcN St{\"a}mme konstruiert, die ein Defensin zu produzieren verm{\"o}gen. Zu diesem Zweck wurden Kodon-optimierte Defensingene in Expressionsplasmidvektoren kloniert, die entweder die Proform mit der Signalsequenz oder die reife Defensinform des humanen -Defensins 5 (HD5) oder des humanen -Defensins 2 (HBD2) unter der Kontrolle des T7-Promotors kodieren. Die Synthese dieser Defensine wurde mittels Western-Blot nach der Induktion der Expression und der Lyse der rekombinanten EcN St{\"a}mme demonstriert. Das rekombinante reife HBD2 mit einem N-terminalen His-Tag konnte mittels Ni-S{\"a}ulen-Chromatographie aufgereinigt werden. Das so gewonnene HBD2 zeigte antimikrobielle Aktivit{\"a}t gegen E. coli, Salmonella enterica Serovar Typhimurium und Listeria monocytogenes. In einem zweiten Ansatz wurde der Teil des HBD2-Gens mit dem yebF-Gen fusioniert, der das reife HBD2 kodiert. Das resultierende Fusionsprotein YebFMHBD2 wurde von dem entsprechenden EcN Stamm nach Induktion der Expression sekretiert. Die Pr{\"a}senz von YebFMHBD2 im Medium war nicht das Ergebnis von Zellyse wie Western-Blots spezifisch f{\"u}r die -Galaktosidase und das Maltose-Bindeprotein mit dem Kultur{\"u}berstand zeigten. Dieser Kultur{\"u}berstand inhibierte das Wachstum von E. coli, Salmonella enterica Serovar Typhimurium und Listeria monocytogenes nach Dialyse und Aufkonzentration sowohl in Agardiffusionsassays als auch in Fl{\"u}ssigcokultur. Damit konnte gezeigt werden, dass EcN ein f{\"u}r die Produktion von bestimmten humanen Defensinen geeignetes Probiotikum darstellt. EcN ist bei der Behandlung von Morbus Crohn Patienten nicht aktiv. Dies ist vermutlich in der genetisch bedingten Unf{\"a}higkeit zur ausreichenden Defensinproduktion solcher Individuen begr{\"u}ndet. Als ein erster Schritt in der Entwicklung von alternativen Ans{\"a}tzen zur Behandlung Morbus Crohn Patienten wurden in dieser Arbeit EcN St{\"a}mme konstruiert, die in der Lage sind HD5 oder HBD2 zu produzieren.}, subject = {Escherichia coli}, language = {en} } @article{OkoroBarquistConnoretal.2015, author = {Okoro, Chinyere K. and Barquist, Lars and Connor, Thomas R. and Harris, Simon R. and Clare, Simon and Stevens, Mark P. and Arends, Mark J. and Hale, Christine and Kane, Leanne and Pickard, Derek J. and Hill, Jennifer and Harcourt, Katherine and Parkhill, Julian and Dougan, Gordon and Kingsley, Robert A.}, title = {Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {3}, doi = {10.1371/journal.pntd.0003611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143779}, pages = {e0003611}, year = {2015}, abstract = {Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population.}, language = {en} } @phdthesis{Leimbach2017, author = {Leimbach, Andreas}, title = {Genomics of pathogenic and commensal \(Escherichia\) \(coli\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154539}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {High-throughput sequencing (HTS) has revolutionized bacterial genomics. Its unparalleled sensitivity has opened the door to analyzing bacterial evolution and population genomics, dispersion of mobile genetic elements (MGEs), and within-host adaptation of pathogens, such as Escherichia coli. One of the defining characteristics of intestinal pathogenic E. coli (IPEC) pathotypes is a specific repertoire of virulence factors (VFs). Many of these IPEC VFs are used as typing markers in public health laboratories to monitor outbreaks and guide treatment options. Instead, extraintestinal pathogenic E. coli (ExPEC) isolates are genotypically diverse and harbor a varied set of VFs -- the majority of which also function as fitness factors (FFs) for gastrointestinal colonization. The aim of this thesis was the genomic characterization of pathogenic and commensal E. coli with respect to their virulence- and antibiotic resistance-associated gene content as well as phylogenetic background. In order to conduct the comparative analyses, I created a database of E. coli VFs, ecoli_VF_collection, with a focus on ExPEC virulence-associated proteins (Leimbach, 2016b). Furthermore, I wrote a suite of scripts and pipelines, bac-genomics-scripts, that are useful for bacterial genomics (Leimbach, 2016a). This compilation includes tools for assembly and annotation as well as comparative genomics analyses, like multi-locus sequence typing (MLST), assignment of Clusters of Orthologous Groups (COG) categories, searching for protein homologs, detection of genomic regions of difference (RODs), and calculating pan-genome-wide association statistics. Using these tools we were able to determine the prevalence of 18 autotransporters (ATs) in a large, phylogenetically heterogeneous strain panel and demonstrate that many AT proteins are not associated with E. coli pathotypes. According to multivariate analyses and statistics the distribution of AT variants is instead significantly dependent on phylogenetic lineages. As a consequence, ATs are not suitable to serve as pathotype markers (Zude et al., 2014). During the German Shiga toxin-producing E. coli (STEC) outbreak in 2011, the largest to date, we were one of the teams capable of analyzing the genomic features of two isolates. Based on MLST and detection of orthologous proteins to known E. coli reference genomes the close phylogenetic relationship and overall genome similarity to enteroaggregative E. coli (EAEC) 55989 was revealed. In particular, we identified VFs of both STEC and EAEC pathotypes, most importantly the prophage-encoded Shiga toxin (Stx) and the pAA-type plasmid harboring aggregative adherence fimbriae. As a result, we could show that the epidemic was caused by an unusual hybrid pathotype of the O104:H4 serotype. Moreover, we detected the basis of the antibiotic multi-resistant phenotype on an extended-spectrum beta-lactamase (ESBL) plasmid through comparisons to reference plasmids. With this information we proposed an evolutionary horizontal gene transfer (HGT) model for the possible emergence of the pathogen (Brzuszkiewicz et al., 2011). Similarly to ExPEC, E. coli isolates of bovine mastitis are genotypically and phenotypically highly diverse and many studies struggled to determine a positive association of putative VFs. Instead the general E. coli pathogen-associated molecular pattern (PAMP), lipopolysaccharide (LPS), is implicated as a deciding factor for intramammary inflammation. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype was proposed presumably encompassing strains more adapted to elicit bovine mastitis with virulence traits differentiating them from commensals. We sequenced eight E. coli isolates from udder serous exudate and six fecal commensals (Leimbach et al., 2016). Two mastitis isolate genomes were closed to a finished-grade quality (Leimbach et al., 2015). The genomic sequence of mastitis-associated E. coli (MAEC) strain 1303 was used to elucidate the biosynthesis gene cluster of its O70 LPS O-antigen. We analyzed the phylogenetic genealogy of our strain panel plus eleven bovine-associated E. coli reference strains and found that commensal or MAEC could not be unambiguously allocated to specific phylogroups within a core genome tree of reference E. coli. A thorough gene content analysis could not identify functional convergence of either commensal or MAEC, instead both have only very few gene families enriched in either pathotype. Most importantly, gene content and ecoli_VF_collection analyses showed that no virulence determinants are significantly associated with MAEC in comparison to bovine fecal commensals, disproving the MPEC hypothesis. The genetic repertoire of bovine-associated E. coli, again, is dominated by phylogenetic background. This is also mostly the case for large virulence-associated E. coli gene cluster previously associated with mastitis. Correspondingly, MAEC are facultative and opportunistic pathogens recruited from the bovine commensal gastrointestinal microbiota (Leimbach et al., 2017). Thus, E. coli mastitis should be prevented rather than treated, as antibiotics and vaccines have not proven effective. Although traditional E. coli pathotypes serve a purpose for diagnostics and treatment, it is clear that the current typing system is an oversimplification of E. coli's genomic plasticity. Whole genome sequencing (WGS) revealed many nuances of pathogenic E. coli, including emerging hybrid or heteropathogenic pathotypes. Diagnostic and public health microbiology need to embrace the future by implementing HTS techniques to target patient care and infection control more efficiently.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} } @article{ElMoualiGerovacMineikaitėetal.2021, author = {El Mouali, Youssef and Gerovac, Milan and Mineikaitė, Raminta and Vogel, J{\"o}rg}, title = {In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkab281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261072}, pages = {5319-5335}, year = {2021}, abstract = {FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.}, language = {en} } @article{MasotaOhlsenSchollmayeretal.2022, author = {Masota, Nelson E. and Ohlsen, Knut and Schollmayer, Curd and Meinel, Lorenz and Holzgrabe, Ulrike}, title = {Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {15}, issn = {1420-3049}, doi = {10.3390/molecules27155045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286179}, year = {2022}, abstract = {The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid-liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2-256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.}, language = {en} }