@phdthesis{Herbst2009, author = {Herbst, Thomas}, title = {Funktionalisierung organischer Verbindungen durch Borylentransfer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Im Rahmen dieser Arbeit wurden Gruppe 6 Aminoborylenkomplexe zum Borylentransfer auf Alkine verwendet. Die Bor-{\"U}bergangsmetallmehrfachbindung wird gespalten, und die Boryleneinheit (BR) auf die C-C-Dreifachbindung {\"u}bertragen. Diese formale [2+1]-Cycloaddition macht Borirene (Boracyclopropene) in sehr guten Ausbeuten zug{\"a}nglich. In fr{\"u}heren Arbeiten ist die Borirensynthese entweder auf geringe Ausbeuten oder auf wenige Beispiele mit schwer zug{\"a}nglichen Edukten beschr{\"a}nkt. Die entwickelte Methode des Borylentranfers, macht die nach H{\"u}ckel kleinsten, aromatischen Systeme im Sinne einer „Eintopfreaktion" darstellbar. Die Verbindungen konnten vollst{\"a}ndig spektroskopisch und strukturell charakterisiert werden. Die photophysikalischen Eigenschaften der Borirene wurden mit UV/Vis-Spektroskopie untersucht, mit dem Ergebnis, dass diese im nicht sichtbaren Bereich des Spektrums absorbieren.Die allgemeine Anwendbarkeit des Borylentransfers konnte durch eine doppelte Borylen{\"u}bertragung auf Diine belegt werden. Es konnte gezeigt werden, dass zwei Aminoboryleneinheiten st{\"o}chiometrisch auf ein Substrat {\"u}bertragen werden. Auf diese Weise konnten erstmalig Bisborirene spektroskopisch und strukturell charakterisiert werden. Die R{\"o}ntgenstrukturanalysen der Bisborirene 82 und 86 haben ergeben, dass aufgrund der sperrigen Bis(trimethylsilyl)aminosubstituenten eine starke Verdrillung der beiden Boracyclopropeneinheiten zueinander vorliegt. Im Falle von 82 sind beide Ebenen der dreigliedrigen Ringsysteme nahezu senkrecht zueinander angeordnet. Die in guten Ausbeuten synthetisierten Borirene konnten wiederum f{\"u}r deren Reaktivit{\"a}tsuntersuchungen eingesetzt werden. Interessanterweise war es m{\"o}glich, das Boriren 58e zu hydroborieren. In Gegenwart von 9-BBN erfolgte eine selektive B-C-Bindungsspaltung von 58e, unter Bildung einer B-H-Bindung. Ein weiterer Aspekt dieser Arbeit sind die Reaktivit{\"a}tsstudien der Borylenkomplexe 32 und 33, gegen{\"u}ber C=O-Doppelbindungen sowie C-N-Mehrfachbindungen. Es wurden durch die photochemischen Umsetzungen von 32 bzw. 33 mit Aceton, Benzophenon und tert-Butylcyanid, andere borhaltige Verbindungen erhalten, deren Konstitution aber nicht gekl{\"a}rt werden konnte. Die Reaktivit{\"a}tsuntersuchungen von 32 und 33 gegen{\"u}ber Alkenen, hat ergeben, dass eine formale Insertion des Borylenliganden in eine olefinische C-H-Bindung stattfindet. C-H-Aktivierungen durch Borylene wurden vorher nur in der Matrix beobachtet oder postuliert, ohne die erhaltenen Reaktionsprodukte zu charakterisieren. Durch die photochemische Umsetzung von 32 mit 3,3-Dimethyl-1-buten sind die Verbindungen 104 und 105 zug{\"a}nglich (Abb. 78). Das Vinylaminoboran 104 wurde als farblose Fl{\"u}ssigkeit in 31\% Ausbeute erhalten, und das Tieftemperatur 1H-NMR-Spektrum zeigte deutlich ein Signal des borgebundenen H-Atoms bei = 5.47ppm. Die Struktur des Olefinkomplexes 105 konnte durch R{\"o}ntgenstrukturanalyse gekl{\"a}rt werden und in {\"U}bereinstimmung mit der NMR-Spektroskopie, lassen sich die Bindungsverh{\"a}ltnisse der B-H-Bindung als sigma-Koordination zum Chromzentrum erkl{\"a}ren.}, subject = {Bor}, language = {de} } @phdthesis{Ye2012, author = {Ye, Qing}, title = {Synthesis and Investigation of Borylene Complexes: from Borylene Transfer to Borylene Catenation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit wurde das Spektrum des Borylentransfers ausgeweitet, indem {\"U}bergangsmetall Alkinylkomplexe und Metall-Kohlenstoff-Doppelbindungen als Borylen-Akzeptoren eingeschlossen wurden. Neben der Salzeliminierung, Halogenidabstraktion und Dehydrierung, wurde eine neuartige Syntheseroute zu terminalen Borylenkomplexen durch Salz- und Silylhalogenideliminierung etabliert. Mithilfe dieser Strategie gelang die Darstellung von [(OC)3(Me3P)Fe=BDur], ein seltenes Beispiel f{\"u}r einen neutralen Arylborylenkomplex. Im Speziellen hat diese Verbindung ein großes Anwendungspotenzial f{\"u}r Metathesereaktionen und die Funktionalisierung von polycyclischen aromatischen Kohlenwasserstoffen, wie z. B. Naphthalin, gezeigt. Außerdem konnte ein Eisen-Bis(borylen)-Komplex [(OC)3Fe(BDur){BN(SiMe3)2}] durch einen Phosphan-Borylen-Austausch dargestellt werden. Ausgehend von diesem Komplex gelang die Darstellung von 1,4-Diboracyclohexadien bzw. des ersten 1,4-Dibora-1,3-Butadien-Komplexes, wodurch eine neue Art von Borylentransfer etabliert werden konnte. H{\"o}chst interessant ist es, dass der Transfer von weiteren Borylen-Einheiten in die Koordinationssph{\"a}re des Eisenatoms zu einer kontrollierten Borylen-Verkettung gef{\"u}hrt hat.}, subject = {Borylene}, language = {en} } @phdthesis{Brenner2012, author = {Brenner, Peter Burkhard}, title = {Boryl- und Borylenplatinkomplexe : Darstellung und Reaktivit{\"a}t unges{\"a}ttigter Komplexe; Reaktivit{\"a}tsstudien zur Metall-vermittelten Kn{\"u}pfung von Bor-Kohlenstoff- und Bor-Bor-Bindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Reaktion der Verbindungen trans-[Pt{B(Br)(R)}Br(PCy3)2] mit Lewis-aciden Bromboranen BBr2(R) liefert Bromo-verbr{\"u}ckte, zweikernige Borylkomplexe. Sowie die jeweiligen Phosphan-Boran-Addukte Cy3P-BBr2(R). Die Reaktion von [Pt{B(X)(R)}(-X)(PCy3)]2 mit 4-Picolin erfolgt unter Koordination der Base am Boratom unter formaler Halogenidverschiebung zur Entstehung der ersten neutralen, basenstabilisierten Borylenkomplexe cis-[Pt{B(R)(4-Pic)}X2(PCy3)]. Durch oxidative Addition der B-Cl-Bindung von BCl3 an [Pt(PCy3)2] ist trans-[Pt(BCl2)Cl(PCy3)2] zug{\"a}nglich, welches durch Reaktion mit Na[BArf4] zum kationischen Borylkomplex trans-[Pt(BCl2)(PCy3)2][BArf4] umgesetzt wird. Durch die strukturelle Charakterisierung von trans-[Pt{B(Br)(Fc)}Br(PiPr3)2] und trans-[Pt{B(Br)(Fc)}(PiPr3)2][BArf4] kann gezeigt werden, dass der Borylligand {B(Br)(Fc)} durch das {Pt(PiPr3)2}-Fragment in einem neutralen sowie in einem kationischen, T-f{\"o}rmigen Komplex stabilisiert werden kann. Die Reaktion von trans-[Pt{B(Br)(NMe2)}(PCy3)2][BArf4] mit Acetonitril f{\"u}hrt zur Bildung des kationischen Acetonitrilkomplexes trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2][BArf4]. Durch die Reaktion von trans-[Pt{B(Br)(NMe2)}Br(PCy3)2] mit Na2[B12Cl12] im Verh{\"a}ltnis 2:1 und Zugabe von Acetonitril wird trans-[Pt{B(Br)(NMe2)}(NCMe)(PCy3)2]2[B12Cl12] als erste kationische, metallorganische Verbindung, die durch [B12Cl12]2- stabilisiert wird, erhalten. Die Abstraktion des Bromoliganden aus trans-[Pt{B(4-Pic)(NMe2)}Br(PCy3)2][BArf4] mittels Na[BArf4] f{\"u}hrt zur Bildung des ersten dikationischen 14-Elektronenkomplexes trans- [Pt{B(NMe2)(4-Pic)}(PCy3)2][BArf4]2 mit einer freien Koordinationsstelle. Die Reaktion von trans-[Pt(BCat')Br(PCy3)2] mit MeLi liefert trans-[Pt(BCat')Me(PCy3)2]. Die Anwesenheit von Alkinen oder Bisphosphanen (P-P) beschleunigt die Reduktive Eliminierung von CatBMe. Die Reaktion von trans-[Pt(BCat')Me(PCy3)2] mit Cat2B2 f{\"u}hrt zu einem Reaktionsgemisch, welches auf einen komplexen Reaktionsverlauf schließen l{\"a}sst. Diese Prozesse verlaufen assoziativ. Es werden zwei m{\"o}gliche Reaktionsmechanismen vorgeschlagen. Dies sind I) die reduktive Eliminierungsreaktion aus einem anf{\"a}nglich gebildeten, hexakoordinierten Platinkomplex und II) eine -Bindungsmetathese der B-B- mit der Pt-C- Bindung. Die oxidative Addition von Cat2B2 an [Pt(PCy3)3] erfolgt reversibel. Die strukturellen Parameter des Bisborylkomplexes im Kristall deuten auf einen sterisch {\"u}berfrachteten cis-Bis(boryl)komplex mit relativ schwach gebundenen Borylliganden hin. Das neuartige Phosphan P(CH2Cy)3, welches sich durch einen flexiblen sterischen Anspruch auszeichnet, wird als Ligand in niedervalenten Phosphankomplexen eingesetzt. Der Platinkomplex reagiert mit 1,3,5-(C6H3)(BBr2)3 selektiv zu 1,3,5-trans-[Pt(BBr)Br{P(CH2Cy)3}2]3(C6H3), dem ersten Tris(boryl)komplex. Die Bis- und Tris(phosphan)rhodium(I)-Komplexe, welche im {\"U}berschuss mit Phosphan im Gleichgewicht vorliegen, reagieren mit CatBH zu trans-[Rh(BCat)ClH{P(CH2Cy)3}2]. [Pt(PCy3)2] reagiert mit CatBH in einer cis-selektiv verlaufenden Reaktion. Die Reaktion von [Pt{P(CH2Cy)3}2] mit CatBH im {\"U}berschuss f{\"u}hrt zur Bildung von trans-[Pt(BCat)H{P(CH2Cy)3}2], cis-[Pt(BCat)2{P(CH2Cy)2}2] und H2 im Gleichgewicht. Gem{\"a}ß quantenchemischen Berechnungen erfolgt die oxidative Addition der B-H-Bindung an [Pt(PR3)2] (R=Me, Cy, CH2Cy) ausgehend von einem -Pr{\"a}kursorkomplex. Durch die oxidative Addition der B-H-Bindung von CatBH an cis-[Pt(BCat)H(PR3)2] wird ein hyperkoordiniertes Platin(IV)-Intermediat gebildet, aus welchem das thermodynamisch stabilere trans-konfigurierte Isomer gebildet werden kann. Dieses Platin(IV)-Intermediat stellt die Schl{\"u}sselverbindung f{\"u}r die nachfolgende Dehydrokupplung dar. Durch einen {\"U}bergangszustand, in welchem Diwasserstoff abgespalten werden kann, wird ein cis-Bis(boryl)platinkomplex gebildet. Durch eine -Bindungsmetathese mit der B-H-Bindung von CatBH kann die B-B-Bindung gekn{\"u}pft und Diboran(4) abgespalten werden. Das metallhaltige Produkt dieser Reaktion ist identisch mit dem trans-(Boryl)(hydrido)platinkomplex. Durch die Flexibilit{\"a}t der P(CH2Cy)3-Liganden werden durchweg Intermediate berechnet, welche geringere Deformationskr{\"a}fte aufweisen als mit den rigiden PCy3-Liganden.}, subject = {Borylgruppe}, language = {de} } @phdthesis{Bertsch2014, author = {Bertsch, Stefanie}, title = {Photolytisch und thermisch induzierte Transmetallierung von Aminoborylenkomplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Aminoborylenkomplexe der Gruppe 6 [(OC)5M=BN(SiMe3)2] (M = Cr, Mo, W) reagieren mit {\"U}bergangsmetallkomplexen unter Transfer der Boryleneinheit bzw. in Transmetallierungsreaktionen und bilden dabei neuartige Borylenkomplexe. In dieser Dissertation wird die Synthese, Charakterisierung und Reaktivit{\"a}t der auf diesem Wege dargestellten Verbindungen - unter anderem Hydridoborylenkomplexe, Bis(borylen)komplexe und borylensubstituierte MOLPs - beschrieben.}, subject = {Borylene}, language = {de} } @phdthesis{Siedler2014, author = {Siedler, Eva}, title = {Reaktivit{\"a}tsstudien an terminalen Alkylborylenkomplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Im Rahmen der Dissertation wurde die Reaktivitat des terminalen Mangan-Borylenkomplexes gegen{\"u}ber verschiedenen polaren Doppelbindungssystemen, koordinativ ungesattigten {\"U}bergangsmetallfragmenten sowie Lewis-Basen untersucht. Mithilfe der spektroskopischen und strukturellen Daten der dabei synthetisierten Verbindungen konnten neue Erkenntnisse uber die Natur der Metall-Bor-Bindung erlangt werden.}, subject = {Borylene}, language = {de} } @phdthesis{Arnold2015, author = {Arnold, Nicole}, title = {Reaktivit{\"a}t von Boranen gegen{\"u}ber {\"U}bergangsmetall-Lewis-Basen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Dihydroborane (H2BR) sowie Dihalogenborane (X2BR) mit {\"U}bergangsmetall-Lewis-Basen umgesetzt und die Reaktivit{\"a}t der auf diese Weise erhaltenen {\"U}bergangsmetall-Bor-Komplexe eingehend untersucht. So wurde eine Serie neuer Borylkomplexe des Typs trans-[Pt{B(Br)R'}Br(PR3)2] dargestellt und mit Salzen schwach-koordinierender Anionen umgesetzt. Diese Studien sollten die Triebkraft f{\"u}r die Bildung kationischer Borylenkomplexe n{\"a}her beleuchten. Die experimentellen Ergebnisse zeigen, dass eine Substitution in ortho-Position des borgebundenen Arylliganden f{\"u}r den notwendigen [1,2]-Halogenshift vom Bor- zum Platinzentrum und somit zur Realisierung einer Pt=B-Mehrfachbindung unabdingbar ist. Demnach reagieren Komplexe mit para-substituierten Arylliganden bei Halogenidabstraktion aus Borylkomplexen zu T-f{\"o}rmigen, kationischen Borylplatinkomplexen, w{\"a}hrend die Duryl-substituierten Analoga unter [1,2]-Halogenwanderung in kationische Borylenplatinkomplexe {\"u}berf{\"u}hrt werden. Neben dem Substitutionsmuster des borgebundenen Arylliganden wurde auch der Einfluss des Phosphanliganden untersucht. Die Molek{\"u}lstrukturen der Borylkomplexe 2 und 4 im Festk{\"o}rper zeigen grundlegende Unterschiede im strukturellen Aufbau. Der Durylsubstituent ist in 2 im Vergleich zur (Ph-4-tBu)-Einheit in 4 deutlich aus der {Br2-Pt-B-Br1}-Ebene herausgedreht (2: Pt-B-C1-C2: 31.4(1); 4: 4.3(7)°), was vermutlich einen [1,2]-Halogenshift in 2 beg{\"u}nstigt. Die Pt-B-Bindungen der kationischen Borylenkomplexe 6 (1.861(5) {\AA}) und 7 (1.863(5) {\AA}) sind deutlich k{\"u}rzer als im neutralen Borylkomplex 2 (2.004(4) {\AA}), was ein eindeutiger Beleg f{\"u}r den Mehrfachbindungscharakter der Pt-B-Bindungen in 6 und 7 ist. Demzufolge scheint der sterische Anspruch des borgebundene Arylsubstituenten entscheidend f{\"u}r den Reaktionspfad bei Halogenidabstraktionen und somit f{\"u}r die Bildung kationischer Borylenplatinkomplexe zu sein, w{\"a}hrend diesen Studien zu Folge der Einfluss der Ligandensph{\"a}re am Platinzentrum eher eine untergeordnete Rolle spielt. Des Weiteren gelang die Synthese der neuartigen heteroleptischen Platinkomplexe [Pt(cAACMe)(PiPr3)] (13) und [Pt(cAACMe)(PCy3)] (14) durch Umsetzung von [Pt(PCy3)2] und [Pt(PiPr3)2] mit dem cyclischen (Alkyl)(Amino)Carben cAACMe (Schema 34, A), bzw. durch Umsetzung von [Pt(nbe)2(PCy3)] (Schema 34, B) mit cAACMe. Die Darstellung des literaturbekannten homoleptischen Komplexes [Pt(cAACMe)2] (11) konnte durch Reaktion von [Pt(nbe)3] mit cAACMe deutlich vereinfacht werden bei gleichzeitiger Steigerung der Ausbeute (96\%, Literatur: 79\%). Die ungew{\"o}hnlich intensiv orangene Farbe dieser Verbindungsklasse geht laut DFT-Rechnungen auf die elektronische Anregung aus dem HOMO in das LUMO zur{\"u}ck, wobei haupts{\"a}chlich die π-Wechselwirkungen zwischen den Platin- und Carbenkohlenstoffatomen des cAACMe-Liganden beteiligt sind (DFT-Rechnungen von Dr. Mehmet Ali Celik). Auch in ihren strukturellen Eigenschaften sind sich 11 - 14 sehr {\"a}hnlich, wohingegen deutliche Unterschiede in deren Elektrochemie und Reaktivit{\"a}t beobachtet wurden. So konnte f{\"u}r 11 eine quasi-reversible Oxidationswelle (E1/2 = -0.30 V gegen [Cp2Fe]/[Cp2Fe]+ in THF) bestimmt werden, w{\"a}hrend die heteroleptischen Komplexe 13 und 14 (Epa = -0.09 V; -0.11 V) sowie deren Vorl{\"a}ufer [Pt(PCy3)2] und [Pt(PiPr3)2] (Epa = 0.00 V; +0.12 V) irreversible Oxidationswellen zeigen. Demnach kann 13 und 14 im Vergleich zu [Pt(PCy3)2] und [Pt(PiPr3)2] ein gr{\"o}ßeres Reduktionsverm{\"o}gen zugeordnet werden. Reaktivit{\"a}tsstudien zeigen, dass der homoleptische Komplex 11 inert gegen{\"u}ber vielen Substraten wie z.B. Boranen, Diboranen(4) und Lewis-S{\"a}uren ist. Im Gegensatz dazu haben sich die heteroleptischen Komplexe 13 und 14 als deutlich reaktiver erwiesen, womit diese eine Mittelstellung zwischen 11 und der Spezies [Pt(PR3)2] einnimmt. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollst{\"a}ndig charakterisiert wurden. Die Reaktivit{\"a}t von 13 und 14 gegen{\"u}ber den Lewis-S{\"a}uren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 f{\"u}hrte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), w{\"a}hrend die oxidative Addition der Hg-Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines {\"A}quivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der {\"U}bergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollst{\"a}ndig charakterisiert wurden. Die Reaktivit{\"a}t von 13 und 14 gegen{\"u}ber den Lewis-S{\"a}uren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 f{\"u}hrte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), w{\"a}hrend die oxidative Addition der Hg-Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines {\"A}quivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der {\"U}bergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Vor Beginn dieser Reaktivit{\"a}tsstudien wurde zun{\"a}chst eine vereinfachte Syntheseroute f{\"u}r Dihydroborane entwickelt. Durch Umsetzung von Cl2BDur mit HSiEt3 konnte auf diese Weise der Syntheseaufwand deutlich verringert und die Ausbeute an H2BDur von 74\% auf 98\% deutlich gesteigert werden. Zur Dehydrokupplung wurden neben Gold-, Rhodium- und Iridiumkomplexen auch Platinkomplexe mit H2BDur umgesetzt. Die Untersuchungen mit Gold- und Rhodiumverbindungen erwiesen sich hierbei als erfolglos und die Umsetzung der Iridiumpincerkomplexe [(PCP)IrH2] 26 und 27 (tBuPCP, AdPCP) mit H2BDur lieferte die Boratkomplexe 28 und 29 mit κ2-koordinierten {H2BHDur}-Liganden. Analog konnte bei Umsetzung von 26 mit H2BThx der Boratkomplex 30 spektroskopisch beobachtet, jedoch nicht isoliert werden. Bei den Komplexen 28 - 30 handelt es sich um die ersten κ2-σ:σ-Dihydroboratkomplexe mit sterisch anspruchsvollen Arylsubstituenten. Neben den Iridiumpincerkomplexen wurde auch der Komplex [Cp*IrCl2]2 mit H2BDur umgesetzt. Die Bildung des Boratkomplexes 34 ist mit einem [1,2]-Shift eines Chloratoms von Iridium auf das Borzentrum verbunden. Die Reaktivit{\"a}t von H2BDur gegen{\"u}ber [Pt(PCy3)2] zeigte eine starke Abh{\"a}ngigkeit h{\"a}ngt von der St{\"o}chiometrie. Bei der 1:1-Umsetzung konnten sowohl die farblosen Verbindungen trans-[(PCy3)2PtH2] und Cy3P→BH2Dur (48) isoliert werden, als auch die beiden dunkelroten Verbindungen [(Cy3P)3Pt3(2-B2Dur2)] (36) und [{(PCy3)Pt}4(2-BDur)2(4-BDur)] (37), kristallographisch untersucht werden. Der B-B-Abstand im π-Diborenkomplex 36 (1.614(6) {\AA}) deutet eindeutig auf die Gegenwart einer B=B-Doppelbindung hin, wobei das Diboren side-on gebunden an zwei der drei Platinatome des Pt3-Ger{\"u}sts koordiniert ist. Die Zusammensetzung von 36 und 37 konnte auch durch Elementaranalysen best{\"a}tigt werden. Die Bildung von 36 und 37 deuten auch darauf hin, dass bei dieser Art der Dehydrokupplung multimetallische Wechselwirkungen eine wichtige Rolle f{\"u}r die Stabilisierung der borzentrierten Liganden spielen. So konnten bei der Reaktion von [Pt(PCy3)2] mit zwei {\"A}quivalenten H2BDur neben Cy3P→BH2Dur (48) auch zwei weitere zweikernige Platinverbindungen isoliert und vollst{\"a}ndig charakterisiert werden. Erhitzen der Reaktionsl{\"o}sung auf 68°C f{\"u}r 170 Minuten f{\"u}hrte hierbei zur Bildung von [{(Cy3P)Pt}2(μ-BDur)(ƞ2:(μ-B)-HB(H)Dur)] (38) mit zwei verbr{\"u}ckenden borzentrierten Liganden, einem Borylen- (BDur) und einem Boranliganden (BH2Dur), welche im 11B{1H}-NMR Spektrum bei δ = 101.3 und δ = 32.8 ppm detektiert wurden. Die R{\"o}ntgenstrukturanalyse von 38 l{\"a}sst einen signifikanten σ-BH-Hinbindungsanteil des Boranliganden zu einem der Platinzentren vermuten, was einen anteiligen Pt2→B-Bindungscharakter andeutet. Dieser Befund konnte auch durch DFT-Rechnungen von Dr. William Ewing best{\"a}tigt werden. Die Studien haben auch gezeigt, dass die Bildung von 38 {\"u}ber eine Zwischenstufe verl{\"a}uft, den hypercloso-Cluster [{(Cy3P)HPt}2(μ-H){μ:ƞ2-B2Dur2(μ-H)}] (39) mit einer tetraedrischen {Pt2B2}-Einheit, zwei terminalen Pt-H-Bindungen sowie je einen die Pt-Pt- bzw. B-B-Bindung verbr{\"u}ckenden Hydridliganden. 39 erwies sich als anf{\"a}llig gegen{\"u}ber H2-Eliminierung und lagert bei Raumtemperatur innerhalb von Tagen, bzw. bei 68°C innerhalb einer Stunde unter B-B-Bindungsbruch quantitativ in 38 um, welche selbst keinen direkten Bor-Bor-Kontakt mehr aufweist. Auf Grundlage der beschriebenen Resultate wurde zudem ein einfacher Zugang zu zweikernigen Platinkomplexen entwickelt. Demnach gelang es, den literaturbekannten zweikernigen Komplex [Pt2(μ:ƞ2-dppm)3] (50) (dppm = Ph2PCH2PPh2) durch Umsetzung von [Pt(nbe)3] mit dppm in guten Ausbeuten zu synthetisieren. Des Weiteren wurde die Reaktivit{\"a}t von 50 gegen{\"u}ber verschiedenen Lewis-S{\"a}uren untersucht. Ein Großteil dieser Umsetzungen war mit der Bildung von schwer l{\"o}slichen Feststoffen verbunden, weshalb lediglich bei der Reaktion mit Br2BPh und Br2BMes geringe Mengen an definiertem Produkt isoliert und durch R{\"o}ntgenstrukturanalyse charakterisiert werden konnten. Demnach f{\"u}hrte die Umsetzung von 50 mit Br2BPh oder Br2BMes zur oxidativen Addition beider B-Br-Bindungen an je eines der Platinzentren und der Bildung der verbr{\"u}ckenden Borylenplatinkomplexe 51 und 52. NMR-spektroskopische Studien deuteten eine analoge Reaktivit{\"a}t von Br2BDur und Br2BFc an, wobei die Komplexe 53 und 54 noch nicht vollst{\"a}ndig charakterisiert werden konnten.}, subject = {Metallorganische Verbindungen}, language = {de} } @phdthesis{Ferkinghoff2015, author = {Ferkinghoff, Katharina}, title = {Reaktivit{\"a}tsstudien an Metalloborylenkomplexen und Eisen-substituierten Borirenen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {D) Zusammenfassung Im Rahmen der vorgestellten Doktorarbeit wurde die Reaktivit{\"a}t des Metalloborylenkomplexes [{(η5-C5Me5)Fe(CO)2}(μ-B){Cr(CO)5}] (43) gegen{\"u}ber weiterer {\"U}bergangsmetallfragmente, verschiedener Mono- bzw. Dialkine sowie unterschiedlicher Isonitrile untersucht. Mittels spektroskopischer und struktureller Befunde der dabei synthetisierten Verbindungen konnten bekannte Sachverhalte best{\"a}tigt und neue Erkenntnisse {\"u}ber die Metall-Bor-Bindung erhalten werden. Der Boridokomplex [{(η5-C5Me5)Fe(CO)2}(μ-B){W(CO)5}] (73) konnte auf dem klassischen Weg einer doppelten Salzeliminierungsreaktion des Dichloroborylkomplexes 11 und dem Metallcarbonylat Na2[W(CO)5] in einer Ausbeute von 46\% dargestellt werden (Abbildung 96). Abbildung 96: Synthese des Boridokomplexes 73. Verbindung 73 weist die f{\"u}r terminale Borylenkomplexe charakteristische, lineare FeBW Einheit sowie ein extrem tieffeldverschobenes 11B{1H}-NMR-Signal auf. Es gelang ebenfalls, die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf ein weiteres {\"U}bergangsmetall-Fragment zu {\"u}bertragen. Dieser intermetallische Transfer bietet neben der klassischen Salzeliminierungsreaktion einen neuen Syntheseweg f{\"u}r Boridokomplexe. Die Umsetzung von 43 mit dem {\"U}bergangsmetallkomplex [(η5 C5H5)(H)W(CO)3] resultiert in 52\%-iger Ausbeute in der Bildung des Hydrid-verbr{\"u}ckten Boridokomplexes [{(η5-C5Me5)(CO)2Fe}(µ-B)(µ-H){CpW(CO)2}] (74) (Abbildung 97). R{\"o}ntgenkristallographische Untersuchungen sowie NMR-spektroskopische Daten belegen die verbr{\"u}ckende Position des Hydridoliganden {\"u}ber die W-B-Bindung der linearen FeBW Einheit. Abbildung 97: Synthese des hydrid-verbr{\"u}ckten Boridokomplexes 74. Aus den Umsetzungen der Hydrid-verbr{\"u}ckten Boridokomplexe [{(η5-C5Me5)(CO)2Fe} (µ B)(µ-H){CpM(CO)2}] (M = W (74), Mo (75)) mit einem {\"A}quivalent des Metall-basischen Platin-(0)-Komplexes [Pt(PCy3)2] konnten die Trimetallo-Boridokomplexe 76 und 77 in Ausbeuten von 27\% und 33\% isoliert und vollst{\"a}ndig charakterisiert werden (Abbildung 98). Sie weisen die f{\"u}r Metall-basenstabilisierten Boridokomplexe typische T-f{\"o}rmige Struktur mit einem verbr{\"u}ckenden Hydridoliganden zwischen der M-Pt-Bindung sowie einer verbr{\"u}ckenden Carbonylgruppe zwischen der Fe-Pt-Bindung auf. Des Weiteren zeigte sich, dass in beiden Verbindungen die M-B-Bindungsabst{\"a}nde vergleichbar mit denen anderer Boridokomplexe sind, die Pt-B-Bindungsabst{\"a}nde jedoch gegen{\"u}ber Platin-Borylkomplexen deutlich verl{\"a}ngert sind. Dieser Befund wurde bereits f{\"u}r andere Metall-Basen-Addukte beschrieben. Mit einem weiteren Metallbasen-Fragment gelang es die noch freie Koordinationsstelle am Bor-Zentrum zu besetzen. Hierzu wurden die Verbindungen 76 und 77 mit einem zweiten {\"A}quivalent des niedervalenten Metallkomplexes [Pt(PCy3)2] umgesetzt (Abbildung 98). Folglich konnten die tetranuklearen Komplexe 78 und 79 in Ausbeuten von 44\% und 30\% isoliert werden. Die 1H-NMR-Kopplungsschemata des Hydridoliganden best{\"a}tigen seine verbr{\"u}ckende Position zwischen dem Metall (Wolfram, Molybd{\"a}n) und Platin. Obwohl die Festk{\"o}rperstruktur von 79 zwei unterschiedliche {Pt(PCy3)}-Fragmente aufweist, zeigt das 31P{1H}-NMR-Spektrum in L{\"o}sung nur ein Signal. Somit liegt bei Raumtemperatur in L{\"o}sung eine Fluktuation der verbr{\"u}ckenden Carbonylgruppe sowie des Hydridoliganden vor. Entgegen den Erwartungen nimmt Verbindung 79 eine stark gekippte Anordnung ein und nicht, wie die meisten bekannten Tetrametallo-Boridokomplexe eine quadratisch-planare Koordination (Anti-van`t Hoff-Le Bel-Verbindungen). Abbildung 98: Reaktivit{\"a}t des hydrid-verbr{\"u}ckten Boridokomplexes 74 gegen{\"u}ber [Pt(PCy3)2]. Des Weiteren gelang es die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf einige unterschiedlich substituierte Alkine zu {\"u}bertragen und die Verbindungsklasse der bislang erst zwei bekannten Eisen-substituierten Borirene auf die Verbindungen 81-86 zu erweitern, welche in Ausbeuten von 24-61\% isoliert werden konnten (Abbildung 99). Abbildung 99: Synthese der Ferroborirene 81-86. Das charakteristische Strukturmerkmal dieser Verbindungsklasse stellt der dreigliedrige Boracyclus dar, dessen Verk{\"u}rzung der BC bzw. Verl{\"a}ngerung der C-C-Bindungen gegen{\"u}ber B-C-Einfach- bzw. C=C Doppelbindungen auf eine Delokalisierung der π Elektronen {\"u}ber ein bindendes Molek{\"u}lorbital bestehend aus den p-Orbitalen der Ring-Atome hindeuten. Durch den thermisch induzierten Borylentransfer und drastische Reaktionsbedingungen gelang es erstmals, ein Ferro(bis)boriren (87) vollst{\"a}ndig zu charakterisieren. Die Umsetzung von 43 mit verschiedenen Dialkinen f{\"u}hrte zur Bildung der Ferro(bis)borirene 87 89 (Abbildung 100). Abbildung 100: Synthese der Ferro(bis)borirene 87-89. Aufgrund der Verk{\"u}rzung der C-C-Einfachbindung zwischen den beiden Dreiringen (1.411(3) {\AA}) kann in dem Ferro(bis)boriren 87 von einer Delokalisation der π Elektronen {\"u}ber beide Boracyclen hinweg ausgegangen werden. Zahlreiche Versuche zur Spaltung der Fe-B-Bindung des Ferroborirens 63 mit H2, Br2 oder HCl, um Zugang zu Borirene mit ver{\"a}nderten Eigenschaften zu erhalten, waren nicht erfolgreich. Auch einige Quarternisierungsversuche des Ferroborirens 63 mit den weniger basischen Pyridinderivaten (3,5-Lutidin, 4 Picolin, 4-(Dimethylamino)-pyridin) waren nicht erfolgreich. Die Reaktionskontrolle mittels 11B{1H} NMR-Spektroskopie zeigte immer nur das Eduktsignal bei δ = 63.4 ppm. Sowohl nach dem Erhitzen f{\"u}r mehrere Stunden auf 80 °C sowie durch Abk{\"u}hlen der Reaktionsl{\"o}sung war keine Reaktion zu erkennen. Die Umsetzung von 63 mit einem cyclischen Alkylaminocarben lieferte ebenfalls keine Reaktion. Weitere Untersuchungen zur Reaktivit{\"a}t von 63 ergaben, dass es durch die Umsetzung von 63 mit zwei {\"A}quivalenten eines N-heterocyclischen Carbens zu einer heterolytischen FeB Bindungsspaltung unter Bildung der Boroniumionen 90-92 kommt (Abbildung 101). Auf diese Weise konnte das erste Borironium-Salz eines Borirens erhalten werden. Abbildung 101: Synthese der Boroniumionen 90-92. Durch die Quarternisierung des Boratoms ist in den Borironiumionen eine Delokalisierung der zwei π Elektronen {\"u}ber ein bindendes Molek{\"u}lorbital bestehend aus den p-Orbitalen der Ring-Atome nicht mehr m{\"o}glich, dies spiegelt sich in der Verl{\"a}ngerung der BC- sowie Verk{\"u}rzung der C-C-Bindungen im Vergleich zur Ausgangsverbindung wieder. Ein weiteres Projekt dieser Arbeit umfasste Untersuchungen zur Reaktivit{\"a}t von Manganborylkomplexen gegen{\"u}ber Isonitrilen. Es zeigte sich, dass durch Umsetzung des Mangan(dibromboryl)komplexes (94) mit Cyclohexyl- bzw. tert-Butylisonirtil die Lewis S{\"a}ure-Base-Addukte 95 und 96 gebildet werden. Abbildung 102: Synthese der Lewis-S{\"a}ure-Base-Addukte 95und 96. Im Gegensatz hierzu kommt es bei der Umsetzung des Phosphan-substituierten Manganborylkomplexes 98 mit Cyclohexyl- bzw. tert-Butylisonirtil zu keiner Adduktbildung, sondern zu einer Insertion zweier Isonitrile in die MnB Bindung unter Bildung eines carbenartigen Mangankomplexes und einem viergliedrigen Ring bestehend aus dem Kohlenstoff- und dem Stickstoffatom eines Isonitrils, dem Kohlenstoffatom des zweiten Isonitrils sowie dem Boratom der {BCl2}-Gruppe. Des Weiteren wurden zwei Carbonylgruppen durch Isonitrile ausgetauscht (Abbildung 103). Abbildung 103: Synthese der Isonitrilinsertionskomplexe 99 und 100. Das letzte Projekt dieser Arbeit umfasste die Untersuchung der Reaktivit{\"a}t von 43 gegen{\"u}ber Isonitrilen. W{\"a}hrend die Umsetzung des Boridokomplexes 43 mit tert-Butyl- bzw. Mesitylisonitril keine selektive Reaktion lieferte, f{\"u}hrte die Umsetzung von 43 mit drei {\"A}quivalenten Cyclohexylisonitril zu einer Insertion der Isonitrile in beide MB-Bindungen und somit zur Bildung der [2.3] Spiro-Verbindung 103. Da der Metalloborylenkomplex 43 formal eine Eisenboryl- und eine Chromborylen-Funktionalit{\"a}t aufweist, werden dementsprechend in dieser Reaktion zwei unterschiedliche Reaktivit{\"a}ten in einem Molek{\"u}l vereinigt. Diese sind zum einen vergleichbar zu der des Eisen(dichlorboryl)komplexes 11 und zum anderen zu der des Chrom(aminoborylen)komplexes 17. Abbildung 104: Synthese der [2,3]-Spiroverbindung 103. Bei der Umsetzung von 43 mit Supermesitylisonitril konnte anhand geeigneter Kristalle f{\"u}r die R{\"o}ntgenstrukturanalyse das Chrom-Spaltungsprodukt [(OC)4(Mes*NC)2Cr] (109) erhalten werden. Dieser Befund sowie quantenchemische Rechnungen sprechen f{\"u}r die Bildung von 115 (Abbildung 105). Abbildung 105: Umsetzung von 43 mit Mes*NC. In den Untersuchungen zu der Isonitril-insertierten [2.3] Spiro-Verbindung 103 konnte zum einen die Reversibilit{\"a}t der Isonitrilinsertion in die FeB-Bindung durch Umsetzung mit der starken Lewis-S{\"a}ure Tris(pentafluorphenyl)boran unter der Bildung des Lewis-S{\"a}ure-Base-Addukts (C5F5)3B-CNtBu vermutet werden. Weitere Reaktivit{\"a}tsuntersuchungen zu 103 zeigen, dass durch die HCl-Addition an die NB Bindung des dreigliedrigen Rings der Eisencarbenkomplex 118 gebildet wird (Abbildung 106). Dieser Befund deutet darauf hin, dass es sich bei der B-N-Bindung in 103 eher um eine dative N→B-Wechselwirkung handelt und diese somit leichter gespalten werden kann als die B-C-Einfachbindung des dreigliedrigen Rings. Abbildung 106: Synthese der Verbindung 118.}, subject = {Borylene}, language = {de} } @phdthesis{Auerhammer2018, author = {Auerhammer, Dominic}, title = {Synthese und Reaktivit{\"a}t von niedervalenten Bor(I)-Verbindungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Kapitel 1 Darstellung und Reaktivit{\"a}t des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische" Metallborylen- Vorstufe ben{\"o}tigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erf{\"a}hrt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = -0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen f{\"u}hren k{\"o}nnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollst{\"a}ndig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivit{\"a}t von [(cAAC)B(CN)]4 (3) gegen{\"u}ber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abh{\"a}ngigkeit von der Basenst{\"a}rke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu f{\"u}hrten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zur{\"u}ckzuf{\"u}hren ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. W{\"a}hrend [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zug{\"a}nglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivit{\"a}t von 3 gegen{\"u}ber Chalcogenen und Chalcogeniden In weiterf{\"u}hrenden Studien wurde zudem die Reaktivit{\"a}t von 3 gegen{\"u}ber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden St{\"o}chiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivit{\"a}t des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch st{\"o}chiometrische Reaktionsf{\"u}hrung dargestellt werden (Schema 68), welche nachfolgend in die bereits erw{\"a}hnten Verbindungen 9 und 10 {\"u}berf{\"u}hrt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zug{\"a}nglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen {\"a}hnliche Reaktivit{\"a}ten gegen{\"u}ber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivit{\"a}t des Borylanions (19) Ein weiterer Aspekt dieser Arbeit besch{\"a}ftigte sich mit der Synthese und Reaktivit{\"a}t des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht m{\"o}glich ist und nur f{\"u}r zwei weitere Systeme beschrieben ist. Hierzu z{\"a}hlen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst erm{\"o}glicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgef{\"u}hrt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: -0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivit{\"a}tsstudien untersucht. So f{\"u}hrte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). W{\"a}hrend die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den h{\"o}heren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am h{\"a}rteren Cyanostickstoffatom. Demzufolge wurden hierbei zun{\"a}chst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb k{\"u}rzester Zeit in 27 {\"u}bergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverh{\"a}ltnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn-Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter {\"u}ber die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter {\"u}ber die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. W{\"a}hrend die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsverm{\"o}gen verdeutlichte, f{\"u}hrte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), w{\"a}hrend bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivit{\"a}t von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivit{\"a}t von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivit{\"a}t auf 29 zu {\"u}bertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivit{\"a}t gegen{\"u}ber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung f{\"u}hrt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabh{\"a}ngig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: -29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 {\"u}ber (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungew{\"o}hnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivit{\"a}t von [(cAAC)BH3] (29) gegen{\"u}ber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell best{\"a}tigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu {\"u}berf{\"u}hren (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollst{\"a}ndig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festk{\"o}rper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) {\AA} (51) und 1.603(4) {\AA} (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) {\AA}).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abh{\"a}ngigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich ver{\"a}ndert. So f{\"u}hrte die Einf{\"u}hrung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarit{\"a}t der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarit{\"a}t konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. W{\"a}hrend die Einf{\"u}hrung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, f{\"u}hrt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X).}, subject = {Borylene}, language = {de} } @phdthesis{Nutz2018, author = {Nutz, Marco}, title = {Synthese und Reaktivit{\"a}t terminaler Arylborylenkomplexe der Gruppe 6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154859}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Synthese unterschiedlicher terminaler Gruppe 6 Borylenkomplexe wurde durchgef{\"u}hrt. Dabei wurden neben NMR- und IR-spektroskopischen Untersuchungen, die Identit{\"a}ten der Verbindungen mittels R{\"o}ntgenkristallographie festgestellt. Ferner wurden Studien zur Reaktivit{\"a}t des nucleophilen Borzentrums in diesen Verbindungen durchgef{\"u}hrt und die erhaltenen Reaktionsprodukte ebenfalls durch die oben genannten Spektroskopiemethoden charakterisiert. Dabei lag das Augenmerkt besonders auf der Darstellung von monovalenten Borverbindungen, sowie Verbindungen mit Bor-Element-Mehrfachbindungen.}, subject = {Borylene}, language = {de} } @phdthesis{Lenczyk2020, author = {Lenczyk, Carsten}, title = {Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen - Darstellung neuer Carbodiphosphorane und deren Koordination an ausgew{\"a}hlte Substrate}, doi = {10.25972/OPUS-18058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Teil 1: Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Koordination und Funktionalisierung von Dihydroboranen an {\"U}bergangsmetallkomplexen durchgef{\"u}hrt. Aufgrund der m{\"o}glichen Anwendung in Dehydrokupplungsreaktionen wurde die Umwandlung von Dihydroboranen in Borylenkomplexe genauer untersucht. Teil 2: Darstellung neuer Carbodiphosphorane und deren Koordination an ausgew{\"a}hlte Substrate Durch Anwendung einfacher Synthesemethoden konnten in der vorliegenden Arbeit neuartige Carbodiphosphorane dargestellt werden. Diese wurden im weiteren Verlauf der Untersuchungen auf ihre Reaktivit{\"a}t gegen{\"u}ber ausgew{\"a}hlten Substraten untersucht.}, subject = {Borylene}, language = {de} } @phdthesis{Deissenberger2020, author = {Deißenberger, Andrea}, title = {Dibortetrahalogenide f{\"u}r die Darstellung neuer borhaltiger Verbindungen in niedrigen Oxidationsstufen}, doi = {10.25972/OPUS-18775}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit konnten nasschemische Synthesen f{\"u}r Dibortetrafluorid und chlorid ausgehend von Dibortetrabromid entwickelt werden, die durch einfachen Halogenaustausch mit SbF3 bzw. GaCl3 realisiert wurden. In Verbindung mit Arbeiten von Dr. Jonas M{\"u}ssig zur Synthese von B2I4 gelang die Darstellung aller vier Dibortetrahalogenide mittels einfacher Schlenktechnik basierend auf der Synthese von B2Br4 durch N{\"o}th und Pommerening im Jahr 1981. Dibortetrachlorid konnte mit Phosphanen (PMe3, PCy3 und PPh3) und Singulett-Carbenen (IDipp und MeCAAC) zu den klassischen Bisaddukten 44-46 bzw. 54 und 55 umgesetzt werden. Die Addition eines Isonitrils (CNtBu) an B2Cl4 f{\"u}hrte zun{\"a}chst zur Ausbildung des Bisadduktes 53, allerdings konnte in L{\"o}sung eine Umlagerung beobachtet werden, deren Verlauf 11B-NMR-spektroskopisch verfolgt wurde, jedoch nicht final aufgekl{\"a}rt werden konnte. Durch die Zugabe eines Unterschusses der Lewis-Basen IDipp bzw. PCy3 sollten zun{\"a}chst Monoaddukte von B2Cl4 dargestellt werden, deren Umsetzung mit einer weiteren Lewis-Base die Synthese asymmetrischer Lewis-Basen-Addukte von B2Cl4 erm{\"o}glichen sollte. Die sp2-sp3-Diborane 56 und 57 konnten bei tiefen Temperaturen 11B-NMR-spektroskopisch nachgewiesen werden, allerdings f{\"u}hrte eine Abfangreaktion mit diversen Lewis-Basen nicht zu den gew{\"u}nschten asymmetrischen Addukten. Bei Raumtemperatur konnte eine Folgereaktion von 56 zur Chlorid-verbr{\"u}ckten kationischen Spezies 58 mit einem Tetrachloroborat-Anion beobachtet werden. Im Fall von Dibortetrafluorid konnten keine Lewis-Basen-Addukte (LB = PMe3 und MeCAAC) isoliert werden. Die Reaktivit{\"a}t von B2Cl4 gegen{\"u}ber unges{\"a}ttigten Substraten wurde anhand mehrerer literaturbekannter Beispiele (Acetylen, 2-Butin, 3-Hexin, Diphenylacetylen und Bis(trimethylsilyl)acetylen) nachvollzogen und um die terminalen Alkine Propin und 1 Hexin erweitert. Eine selektive Addition von B2Br4 an Dreifachbindungen gelang nicht. Die so erhaltenen Diborylalkene sollten zur Darstellung von 1,2-Diboreten genutzt werden, wobei zun{\"a}chst {\"u}ber eine von Siebert et al. entwickelte Route die Bis(N,N-dialkylaminochlorboryl)alkene 67g, h, j und k dargestellt wurden. Ein nachfolgender Ringschluss unter reduktiven Bedingungen verlief nur f{\"u}r die Diisopropyl¬amino-substituierten Diborylalkene 67g und j selektiv und lieferte das 1,2-Dihydro-1,2-diboret 71g und das umgelagerte 1,3-Dihydro-1,3-diboret 68j. Der Austausch der Aminosubstituenten gegen Halogenide, der f{\"u}r eine weitere Reduktion zur B-B-Doppelbindung n{\"o}tig w{\"a}re, gelang nicht. Die Umsetzung der Diborylalkene 61 (R = Me), 62 (R = Et) und 65 (R = Ph) mit Singulett-Carbenen (LB = IMe, IiPr, IDipp und MeCAAC) f{\"u}hrte zu den chloridverbr{\"u}ckten Monoaddukten 74-76 und 79-81. Alle Verbindungen dieses Typs zeigten in NMR-spektroskopischen Untersuchungen ein sp2- und ein sp3-koordiniertes Borzentrum, welche f{\"u}r die CAAC-stabilisierten Verbindungen auch r{\"o}ntgenkristallografisch nachgewiesen werden konnten. Theoretische Untersuchungen best{\"a}tigten die Relevanz des verbr{\"u}ckenden Chloratoms zur Stabilisierung dieser Verbindungen. F{\"u}r die Stammverbindung der Diborylalkene (59 (R = H)) konnte bei der Umsetzung mit MeCAAC eine unl{\"o}sliche Verbindung erhalten werden, deren Struktur als Bisaddukt 82 mittels NMR-spektroskopischen Untersuchungen im Festk{\"o}rper und durch Verbrennungsanalyse best{\"a}tigt werden konnte. Die Reduktion der CAAC-stabilisierten Diborylalkene 79 und 80 in Gegenwart von MeCAAC f{\"u}hrte zu den captodativ-stabilisierten Diborylradikalen 83 und 84, deren Strukturanalyse eine orthogonale Anordnung der C2-Br{\"u}cke zur B(CAAC)-Einheit offenlegt. Ausf{\"u}hrliche EPR-spektroskopische Untersuchungen bei variabler Temperatur und theoretische Berechnungen best{\"a}tigen eine schwache Wechselwirkung der beiden Radikalzentren und einen offenschaligen Singulett-Grundzustand mit einem energetisch tiefliegenden Triplett-Zustand (ΔES T = 0.017 kcal mol-1). Der experimentell bestimmte Spin-Spin-Abstand und die Analyse der einfach besetzten Molek{\"u}lorbitale (SOMO) best{\"a}tigen eine Delokalisierung der Spindichte {\"u}ber die NCAAC-CCAAC-B-Einheit. Der Austausch der verbr{\"u}ckenden Einheit und die somit einhergehende Verringerung der Sterik f{\"u}hrt zu einer Planarisierung des Molek{\"u}ls im Festk{\"o}rper (87). Theoretische Untersuchungen und die Auswertung der strukturellen Parameter ergeben eine Delokalisierung der Elektronendichte {\"u}ber das gesamte planare System. EPR- und NMR-spektroskopische Untersuchungen ergaben dennoch Hinweise auf das Vorliegen einer paramagnetischen Verbindung. Untersuchungen zum Reduktionsverhalten von zweifach CAAC-stabilisiertem 1,4-Bis-(dibromboryl)benzol (97) ergaben die vollst{\"a}ndige Enthalogenierung der Borzentren. Im Zuge dessen entstand ein hochreaktives, lineares Borylen, welches eine CH-Aktivierung mit dem Isopropylsubstituenten des CAAC-Liganden eingeht (98). Zur Stabilisierung des Borylens wurde die Reduktion in Gegenwart weiterer Lewis-Basen (Pyridin (Pyr), IiPr, IMeMe, PMe3, CNtBu und CO) durchgef{\"u}hrt, die in der Ausbildung der Diborylene 99-104 resultierten. Die Darstellung einer para-Phenylen-verbr{\"u}ckten Donor-Akzeptor-Verbindung (D: Borylen, A: BMes2) gelang nicht.}, subject = {Dibortetrahalogenide}, language = {de} } @phdthesis{Liu2020, author = {Liu, Siyuan}, title = {New Avenues in the Reactivity of Borylene Complexes}, doi = {10.25972/OPUS-18430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184302}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The thesis is mainly about the reactivities of borylene complexes. Including the investigation of the reaction of base stabilized terminal borylene with elemental chalcogens. On the other hand the are also the reactivity of borylene with bipyridine species is also studies. A C-H activation of the Cp2WH2 using borylene is also discovered. Finally the reaction of a borylene with Lewis acids such as GaCl3 and InBr3 is also studied.}, subject = {Borylene}, language = {en} } @unpublished{SchmidtFantuzziArrowsmithetal.2020, author = {Schmidt, Uwe and Fantuzzi, Felipe and Arrowsmith, Merle and Hermann, Alexander and Prieschl, Dominic and Rempel, Anna and Engels, Bernd and Braunschweig, Holger}, title = {Tuneable reduction of cymantrenylboranes to diborenes or borylene-derived boratafulvenes}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/D0CC06398C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222149}, year = {2020}, abstract = {Whereas the reduction of N-heterocyclic carbene (NHC)-stabilised cymantrenyldibromoboranes, (NHC)BBr\(_2\)Cym, in benzene results in formation of the corresponding diborenes (NHC)\(_2\)B\(_2\)Cym\(_2\), a change of solvent to THF yields a borylene of the form (NHC)\(_2\)BCym, stabilised through its boratafulvene resonance form.}, language = {en} } @article{LiuLegareSeufertetal.2020, author = {Liu, Siyuan and L{\´e}gar{\´e}, Marc-Andr{\´e} and Seufert, Jens and Prieschl, Dominic and Rempel, Anna and Englert, Lukas and Dellermann, Theresa and Paprocki, Valerie and Stoy, Andreas and Braunschweig, Holger}, title = {2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent}, series = {Inorganic Chemistry}, volume = {59}, journal = {Inorganic Chemistry}, number = {15}, doi = {10.1021/acs.inorgchem.0c01383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215595}, pages = {10866-10873}, year = {2020}, abstract = {2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R-B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal-borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond.}, language = {en} } @phdthesis{Matler2022, author = {Matler, Alexander}, title = {Synthese und Reaktivit{\"a}t von {\"U}bergangsmetall-stabilisierten und Lewis-basenstabilisierten Borylenen}, doi = {10.25972/OPUS-24018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240184}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit befasst sich im ersten Teil mit der Reaktivit{\"a}t von Gruppe 8 Borylenkomplexen. Zun{\"a}chst wurde der Eisenborylenkomplex 71 mit verschiedenen Carbodiimiden umgesetzt. Die entstandenen Produkte in Form von Spiroverbindungen, [2+2]-Cycloadditionsprodukten sowie Diazadiboretidinen konnten strukturell und spektroskopisch untersucht werden. Außerdem wurde 71 mit Aziden umgesetzt, was NMR-spektroskopisch zur Bildung von Tetrazaborolen f{\"u}hrt. Der Eisenbis(borylen)komplex 72 wurde ebenfalls mit Carbodiimiden umgesetzt und die entstandenen Verbindungen, unter anderem Diazadiboretidine, strukturell und spektroskopisch untersucht. Eine Umsetzung von 72 mit Stickstoffbasen wie Azobenzol, 2,2'-Bipyridin oder Pyridazin f{\"u}hrte bei letzterem zur Bildung eines Koordinationsprodukts. W{\"a}hrend die Umsetzungen des Eisentetrakis(borylen)komplexes 73 mit Methylisocyanid, Magnesium und Trimethylphosphan zu Zersetzung f{\"u}hrten, konnten mit Bis(piperidyl)acetylen und Diisopropylcarbodiimid keine Umsetzungen festgestellt werden. Nach Aufnahme eines UV/Vis- und CV-Spektrums des Eisentetraborkomplexes 74 wurde versucht, diesen mit diversen Erd- und Erdalkalimetallverbindungen zu reduzieren. Hierbei konnte entweder keine Reaktion oder Zersetzung festgestellt werden. Weitere Umsetzungen von 74 erfolgten mit unterschiedlichen Lewis-Basen, Stickstoffbasen, S{\"a}uren, Gasen, Chalkogenen, DIC und einer Platin(0)-verbindung. Diese Umsetzungen f{\"u}hrten zu keinen identifizierbaren Produkten. Im zweiten Teil dieser Arbeit wurde die Synthese und Reaktivit{\"a}t des basenstabilisierten Borylens 89 untersucht. Nach Verbesserung der Synthesebedingungen konnte ein photolytisch induzierter Ligandenaustausch des CO-Liganden mit verschiedenen Substraten durchgef{\"u}hrt werden. Hierbei f{\"u}hrten die Umsetzungen mit Carbenen oder Phosphanen in Abh{\"a}ngigkeit derer sterischer Eigenschaften zu den entsprechenden Adduktverbindungen. Außerdem konnte eine Adduktverbindung mit Schwefel dargestellt werden, w{\"a}hrend eine Umsetzung mit Selen nur zur Zersetzung f{\"u}hrte. Die Umsetzung mit DMAP lieferte im Gegensatz zur den vorherigen Adduktverbindungen ein biradikalisches Produkt, welches durch ESR-Messung charakterisiert werden konnte. Eine l{\"o}sungmittelabh{\"a}ngige Reaktion findet mit Trifluorophosphan statt, mit welchem die entsprechende instabile Borylenverbindung NMR-spektroskopisch untersucht werden konnte. Die Borazidspezien 169 und 170 sowie das Aminoboran 171 konnten durch Umsetzung von 89 mit Mesityl- und Phenylazid generiert und vollst{\"a}ndig charakterisiert werden. In Anlehnung an die Synthese von Fischercarbenkomplexen wurde 89 mit Organometallverbindungen umgesetzt, um die Reaktivit{\"a}t des CO-Liganden zu erforschen. Nach Umsetzungen mit Phenyllithium, Methyllithium oder Benzylkalium erfolgte die Methylierung in situ mittels Methyltriflat oder dem Meerwein-Salz [Me3O][BF4]. Die entstandenen Fischercaben-analogen Verbindungen konnten strukturell und spektroskopisch charakterisiert werden.}, subject = {Borylene}, language = {de} } @phdthesis{Hagspiel2022, author = {Hagspiel, Stephan Alexander}, title = {Synthesis and Reactivity of Pseudohalide-substituted Boranes and Borylenes}, doi = {10.25972/OPUS-24945}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work involves the synthesis and reactivity of pseudohalide-substituted boranes and borylenes. A series of compounds of the type (CAAC)BR2Y (CAAC = cyclic alkyl(amino)carbene; R = H, Br; Y = CN, NCS, PCO) were prepared first. The two-electron reduction of (CAAC)BBr2Y (Y = CN, NCS) in the presence of a second Lewis base L (L = N-heterocyclic carbene) resulted in the formation of the corresponding doubly Lewis base-stabilized pseudohaloborylenes (CAAC)(L)BY. These borylenes show versatile reactivity patterns, including their oxidation to the corresponding radical cations, coordination via the respective pseudohalide substituent to group 6 metal carbonyl complexes, as well as a boron-centered protonation with Br{\o}nsted acids to boronium cations. Reduction of (CAAC)BBr2(NCS) in the absence of a second donor ligand, led to the formation of boron-doped thiazolothiazoles via reductive dimerization of two isothiocyanatoborylenes. These B,N,S-heterocycles possess a low degree of aromaticity as well as interesting photophysical properties and can furthermore be protonated as well as hydroborated. Additionally, CAAC adducts of the parent boraphosphaketene (CAAC)BH2(PCO) could be prepared, which readily reacted with boroles [Ph4BR'] (R' = aryl) via decarbonylation in a ring expansion reaction. The obtained 1,2-phosphaborinines represent B,P-isosteres of benzene and consequently could be coordinated to metal carbonyl complexes of the chromium triade via η6-coordination, resulting in new half-sandwich complexes thereof.}, subject = {Borylene}, language = {en} } @phdthesis{Bischof2022, author = {Bischof, Tobias Christian}, title = {Synthese und Reaktivit{\"a}t von borfunktionalisierten Dodecaboranen}, doi = {10.25972/OPUS-28705}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287059}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen der vorliegenden Arbeit wurden vier Verbindungsklassen - Borylene, Borole, 9-Borafluorene und 9-Aluminafluorene - untersucht und neue Vertreter dieser Klassen, substituiert mit einem ortho-Dicarba-closo-dodecaboran, dargestellt und auf ihre Reaktivit{\"a}t hin untersucht. Dabei sollte mit den speziellen chemischen Eigenschaften des Carboranylsubstituenten, wie dem elektronenziehenden und gleichzeitig σ-aromatischen Charakter, eine erh{\"o}hte Reaktivit{\"a}t der Zielverbindung erreicht werden.}, subject = {Dodecaborane}, language = {de} } @phdthesis{Rang2023, author = {Rang, Maximilian}, title = {Metall{\"a}hnliche Reaktivit{\"a}t \(in\) \(situ\) erzeugter Borylene}, doi = {10.25972/OPUS-24046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Einfach Lewis-Basen stabilisierte Borylene wurden durch Reduktion in situ hergestellt und in Gegenwart von Kohlenstoffmonoxid oder Distickstoff umgesetzt. Die entstandenen Verbindungen wurden mittels NMR-, ESR-, UV/Vis- und IR-Spektroskopie sowie Einkristallr{\"o}ntgenstrukturanalyse charakterisiert. Im Zuge dessen konnten f{\"u}r die erhaltenen Spezies Eigenschaften ermittelt werden, die denen analoger {\"U}bergangsmetallkomplexe {\"a}hneln. Ferner konnten die zugrundeliegenden mechanistischen Vorg{\"a}nge der Reaktionen durch gezielte Variation der Reaktionsparameter aufgekl{\"a}rt werden. Zudem wurden Redoxverhalten und Reaktivit{\"a}ten der isolierten Produkte in weiterf{\"u}hrenden Studien n{\"a}her untersucht.}, subject = {Bor}, language = {de} } @phdthesis{Gaertner2023, author = {G{\"a}rtner, Annalena}, title = {Synthese und Reaktivit{\"a}t niedervalenter Borverbindungen}, doi = {10.25972/OPUS-29277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Dissertation befasst sich mit der Synthese und Reaktivit{\"a}t verschiedener niedervalenter Borverbindungen. In dem ersten Kapitel der Arbeit wurde das CAAC-stabilisierte Cyano(hydro)borylanion auf seine Bor- sowie Stickstoff-zentrierte Nucleophilie hin untersucht. Das ambidente Reaktionsverhalten der Verbindung konnte gegen{\"u}ber verschiedenen Kohlenstoffelektrophilen sowie Monohalogenboranen nachgewiesen werden. Der zweite Teil der Arbeit befasst sich mit der Aktivierung, Fixierung und Verkettung von Distickstoff durch Borylene. Es gelang den Mechanismus experimentell sowie quantenchemisch aufzukl{\"a}ren. Das Folgeprodukt der Protonierung, welches ein Bisborylhydrazindiradikal darstellt, wurde weitergehend auf seine Reaktivit{\"a}t als Reduktionsmittel untersucht und konnte selektiv einfach sowie zweifach oxidiert werden. Das dritte Kapitel beschreibt die Synthese eines neuartigen, vollst{\"a}ndig unges{\"a}ttigten 1,2-Diboretdiradikals, welches durch die schrittweise Reduktion des 2,3-[(CAAC)BBr2]2-Naphthalins erhalten wurde. Anf{\"a}ngliche Reaktivit{\"a}tsstudien zu dem 1,2-Diboretdiradikal zeigen zudem, dass die Verbindung als Bor-Bor-Mehrfachbindung gegen{\"u}ber einem Azid reagiert, jedoch durch die Umsetzung mit Kohlenstoffmonoxid auch zu einem Bisborylen gespalten werden kann.}, subject = {Borylene}, language = {de} }