@phdthesis{Erfurth2010, author = {Erfurth, Felix}, title = {Elektronenspektroskopie an Cd-freien Pufferschichten und deren Grenzfl{\"a}chen in Cu(In,Ga)(S,Se)2 D{\"u}nnschichtsolarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46208}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die in dieser Arbeit untersuchten Solarzellen auf Basis des Verbindungshalbleiters Cu(In,Ga)(S,Se)2 sind zur Zeit das vielversprechendste Materialsystem im Bereich der D{\"u}nnschichtfotovoltaik. Um damit m{\"o}glichst hohe Wirkungsgrade zu erreichen, ist eine CdS-Pufferschicht notwendig, welche aufgrund ihrer Toxizit{\"a}t und des schlecht integrierbaren, nasschemischen Abscheideprozesses durch alternative Pufferschichten ersetzt werden soll. Im Rahmen dieser Arbeit wurden solche Cd-freien Pufferschichten in Chalkopyrit-D{\"u}nnschichtsolarzellen untersucht. Dabei wurde insbesondere deren Grenzfl{\"a}che zum Absorber charakterisiert, da diese eine wesentliche Rolle beim Ladungstr{\"a}gertransport spielt. Die hier untersuchten (Zn,Mg)O-Schichten stellen ein vielversprechendes Materialsystem f{\"u}r solche Cd-freien Pufferschichten dar. Durch den Einbau von Magnesium k{\"o}nnen die elektronischen Eigenschaften der eigentlichen ZnO-Schicht an den Absorber angepasst werden, was zu deutlich h{\"o}heren Wirkungsgraden f{\"u}hrt. Als Hauptgrund geht man dabei von einer besseren Leitungsbandanpassung an der Grenzfl{\"a}che aus, welche allerdings bisher nur grob anhand der Position des Valenzbandmaximums an der Oberfl{\"a}che und der optischen Volumenbandl{\"u}cke abgesch{\"a}tzt werden konnte. In dieser Arbeit wurde diese Grenzfl{\"a}che daher mittels Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie untersucht, wobei durch die Kombination beider Methoden die Valenz- und Leitungsbandpositionen direkt bestimmt werden konnten. Es wurde gezeigt, dass der Bandverlauf an der Grenzfl{\"a}che tats{\"a}chlich durch die {\"A}nderung des Mg-Gehalts der (Zn,Mg)O-Schichten optimiert werden kann, was eine wichtige Voraussetzung f{\"u}r einen m{\"o}glichst verlustarmen Ladungstransport ist. Im Fall von reinem ZnO wurde ein „cliff" (Stufe nach unten) beobachtet, welches mit steigendem Mg-Gehalt abnimmt schließlich ganz verschwindet. Die weitere Erh{\"o}hung des Mg-Gehalts f{\"u}hrt zur Bildung eines „spike" (Stufe nach oben). Dass es sich bei einer solchen Stufe nicht um die abrupte {\"A}nderung des Bandverlaufs an einer „idealen", scharf definierten Grenzfl{\"a}che handelt, haben die vorliegenden Untersuchungen der chemischen Struktur gezeigt. Infolge der dabei beobachteten Durchmischungseffekte bildet sich eine sehr komplexe Grenzfl{\"a}che mit endlicher Breite aus. So wurde bei der Deposition der (Zn,Mg)O-Schichten die Bildung von In-O-Verbindungen an der Grenzfl{\"a}che beobachtet. Im Fall von Zn konnte die Diffusion in den Absorber nachgewiesen werden, wodurch es dort zur Bildung von ZnS kommt. Im weiteren Verlauf dieser Arbeit wurde die Grenzfl{\"a}che zwischen der (Zn,Mg)O-Pufferschicht und CuInS2-Absorbern untersucht. Durch ihre h{\"o}here Bandl{\"u}cke im Vergleich zu den oben untersuchten Cu(In,Ga)(S,Se)2-Absorbern erhofft man sich eine h{\"o}here Leerlaufspannung und dadurch bessere Wirkungsgrade. Bisher liegt dieser Leistungsanstieg allerdings unter den zu erwartenden Werten, wof{\"u}r eine schlechte Anpassung des Leitungsbandverlaufs an die herk{\"o}mmliche CdS-Pufferschicht verantwortlich gemacht wird. Gerade f{\"u}r dieses Materialsystem scheint sich daher (Zn,Mg)O als Pufferschicht anzubieten, um die Bandanpassung an der Grenzfl{\"a}che zu optimieren. Bei den in dieser Arbeit durchgef{\"u}hrten Untersuchungen an dieser Grenzfl{\"a}che konnten ebenfalls Durchmischungsprozesse beobachtet werden. Zus{\"a}tzlich wurde gezeigt, dass auch bei diesem Materialsystem der Bandverlauf an der Grenzfl{\"a}che durch die Variation des Mg-Gehalts angepasst werden kann. Insgesamt konnte so f{\"u}r beide Absorbertypen ein detailliertes Bild der (Zn,Mg)O/Puffer-Grenzfl{\"a}che gezeichnet werden. F{\"u}r hinreichend gute Wirkungsgrade von Zellen mit „trocken" abgeschiedenen Pufferschichten ist in den meisten F{\"a}llen eine zus{\"a}tzliche, nasschemische Vorbehandlung des Absorbers notwendig, deren Einfluss auf die Absorberoberfl{\"a}che ebenfalls in dieser Arbeit untersucht wurde. Dabei hat sich gezeigt, dass durch eine solche Behandlung das auf der Oberfl{\"a}che angereicherte Natrium vollst{\"a}ndig entfernt wird, was eine deutliche Steigerung desWirkungsgrades zur Folge hat.Weitere Untersuchungen f{\"u}hrten zu dem Ergebnis, dass eine solche Reinigung der Absorberoberfl{\"a}che auch durch den Prozess der Sputterdeposition selbst hervorgerufen werden kann. So kommt es neben der Ablagerung des Schichtmaterials zu deutlichem Materialabtrag von der Absorberoberfl{\"a}che, wodurch diese von Adsorbaten und von auf der Oberfl{\"a}che sitzenden Oxidverbindungen gereinigt wird. Untersuchungen an Absorbern, welche in einem Cd2+-haltigen Bad vorbehandelt wurden, haben gezeigt, dass der dabei abgeschiedene CdS/Cd(OH)2-Film ebenfalls fast vollst{\"a}ndig w{\"a}hrend der Sputterdeposition entfernt wird. Abschließend wurden auf In2S3-basierende Pufferschichten charakterisiert, welche aufgrund ihrer bisher erreichten hohen Wirkungsgrade eine weitere Alternative zu CdS-Puffern darstellen. Hier wurde an der Grenzfl{\"a}che zum Absorber eine starke Diffusion der Cu-Atome in die Pufferschicht hinein beobachtet, wodurch es zur Bildung von CuInS2-Phasen kommt. Messungen an bei verschiedenen Temperaturen abgeschiedenen Schichten haben gezeigt, dass diese Diffusion durch hohe Temperaturen zus{\"a}tzlich verst{\"a}rkt wird. Gleichzeitig konnte auch die Diffusion von Ga-Atomen nachgewiesen werden, welche allerdings wesentlich schw{\"a}cher ausf{\"a}llt. Analog zu den vorangegangenen Ergebnissen konnte somit auch bei diesem Materialsystem die Ausbildung einer sehr komplexen Grenzfl{\"a}chenstruktur beobachtet werden.}, subject = {D{\"u}nnschichtsolarzelle}, language = {de} } @phdthesis{Wagenpfahl2013, author = {Wagenpfahl, Alexander Johannes}, title = {Numerical simulations on limitations and optimization strategies of organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Continuously increasing energy prices have considerably influenced the cost of living over the last decades. At the same time increasingly extreme weather conditions, drought-filled summers as well as autumns and winters with heavier rainfall and worsening storms have been reported. These are possibly the harbingers of the expected approaching global climate change. Considering the depletability of fossil energy sources and a rising distrust in nuclear power, investigations into new and innovative renewable energy sources are necessary to prepare for the coming future. In addition to wind, hydro and biomass technologies, electricity generated by the direct conversion of incident sunlight is one of the most promising approaches. Since the syntheses and detailed studies of organic semiconducting polymers and fullerenes were intensified, a new kind of solar cell fabrication became conceivable. In addition to classical vacuum deposition techniques, organic cells were now also able to be processed from a solution, even on flexible substrates like plastic, fabric or paper. An organic solar cell represents a complex electrical device influenced for instance by light interference for charge carrier generation. Also charge carrier recombination and transport mechanisms are important to its performance. In accordance to Coulomb interaction, this results in a specific distribution of the charge carriers and the electric field, which finally yield the measured current-voltage characteristics. Changes of certain parameters result in a complex response in the investigated device due to interactions between the physical processes. Consequently, it is necessary to find a way to generally predict the response of such a device to temperature changes for example. In this work, a numerical, one-dimensional simulation has been developed based on the drift-diffusion equations for electrons, holes and excitons. The generation and recombination rates of the single species are defined according to a detailed balance approach. The Coulomb interaction between the single charge carriers is considered through the Poisson equation. An analytically non-solvable differential equation system is consequently set-up. With numerical approaches, valid solutions describing the macroscopic processes in organic solar cells can be found. An additional optical simulation is used to determine the spatially resolved charge carrier generation rates due to interference. Concepts regarding organic semiconductors and solar cells are introduced in the first part of this work. All chapters are based on previous ones and logically outline the basic physics, device architectures, models of charge carrier generation and recombination as well as the mathematic and numerical approaches to obtain valid simulation results. In the second part, the simulation is used to elaborate issues of current interest in organic solar cell research. This includes a basic understanding of how the open circuit voltage is generated and which processes limit its value. S-shaped current-voltage characteristics are explained assigning finite surface recombination velocities at metal electrodes piling-up local space charges. The power conversion efficiency is identified as a trade-off between charge carrier accumulation and charge extraction. This leads to an optimum of the power conversion efficiency at moderate to high charge carrier mobilities. Differences between recombination rates determined by different interpretations of identical experimental results are assigned to a spatially inhomogeneous recombination, relevant for almost all low mobility semiconductor devices.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Kremling2013, author = {Kremling, Stefan}, title = {Charakterisierung von InP und InGaN Quantenpunkten als Einzelphotonenquellen sowie von AlGaInAs Quantenpunkten in Zwischenband-Solarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Arbeit beschreibt die Charakterisierung von Halbleiter-Quantenpunkten (QP) in unterschiedlichen Materialsystemen. Die hier dargelegten Untersuchungen wurden mit verschiedenen Methoden der optischen Spektroskopie durchgef{\"u}hrt. Zu Beginn der Arbeit werden theoretische Grundlagen von QP hinsichtlich ihrer elektronischen Struktur und statistischen Eigenschaften erl{\"a}utert. Dar{\"u}ber hinaus wird n{\"a}her auf die Physik von Solarzellen eingegangen, in dem die relevanten Gleichungen f{\"u}r die Beschreibung des Ladungstr{\"a}gertransportes hergeleitet und diskutiert werden. Darauf folgend werden die experimentelle Methoden erkl{\"a}rt, welche zur Charakterisierung der jeweiligen Proben dienten. Besonderes Augenmerk wird auf die Methode zur Messung des Zwei-Photonen-Absorptionsprozesses gelegt. Der Abschnitt der experimentell gewonnenen Ergebnisse beginnt mit Untersuchungen an einzelnen, spektral isolierten InP QP, welche mit ultralangsamen Wachstumsraten hergestellt wurden. Aufgrund der sehr geringen Fl{\"a}chendichte konnten grundlegende physikalische Eigenschaften von QP ohne zus{\"a}tzliche laterale Strukturierungen studiert werden. Mittels Messungen in Abh{\"a}ngigkeit der Anregungsleistung und Detektion in Abh{\"a}ngigkeit der Polarisation konnten die verschiedenen Lumineszenzlinien eines QP-Spektrums den jeweiligen exzitonischen Zust{\"a}nden zugeordnet werden. Zus{\"a}tzlich wurden die QP in einem externen Magnetfeld in Faraday-Konfiguration untersucht. Abschließend durchgef{\"u}hrte Autokorrelationsmessungen erlaubten die Untersuchung der zeitlichen Statistik der QP-Photonen. Es konnte die Emission einzelner Photonen nachgewiesen werden. Anschließend folgen spektroskopische Untersuchungen von InP QP, welche mittels sequentiellen Wachstums hergestellt wurden. Anhand von Messungen in Abh{\"a}ngigkeit der Anregungsleistung und best{\"a}tigt durch zeitaufgel{\"o}ste Messungen am QP-Ensemble wurde eine bimodale QP-Verteilung mit Typ-I und Typ-II Bandverlauf bestimmt. Zus{\"a}tzlich konnten an einzelnen, spektral isolierten QP verschiedene Exziton-Zust{\"a}nde identifiziert werden, bevor abschließend Autokorrelationsmessungen die Emission einzelner Photonen demonstrierten. Zur Steigerung der Auskoppeleffizienz der Photonen wurden InP QP in Mikros{\"a}ulenresonatoren, bestehend aus zwei Bragg-Spiegeln mit einer dazwischenliegenden GaInP Kavit{\"a}t, eingebettet. Anfangs wurde die Emission der Kavit{\"a}tsmode von Strukturen mit unterschiedlichen lateralen Durchmessern charakterisiert. Mittels Temperaturverstimmung konnte die Energie eines einzelnen QP-Exzitons in Resonanz mit der Resonatormode gebracht werden. Im Regime der schwachen Wechselwirkung wurde eine signifikante {\"U}berh{\"o}hung der Lumineszenzintensit{\"a}t aufgrund des Purcell-Effektes gemessen. Zus{\"a}tzlich wurde im Regime der schwachen Kopplung die Emission einzelner Photonen anhand von Korrelationsmessungen nachgewiesen. Im zweiten Schritt wurden die QP-Mikros{\"a}ulenresonatorstrukturen elektrisch angeregt. Nach einer grundlegenden Charakterisierung konnte auch hier mittels Temperaturverstimmung die Energie der Resonatormode mit der eines Exziton in Resonanz gebracht werden. Im Regime der schwachen Wechselwirkung stieg die Intensit{\"a}t der Lumineszenz aufgrund des Purcell-Effekts signifikant an. Zum Abschluss best{\"a}tigen Korrelationsmessungen den Nachweis der Emission einzelner Photonen. In Kapitel 6 werden die Eigenschaften von InGaN QP genauer analysiert. Nitrid-Verbindungshalbleiter kristallieren vorzugsweise stabil in der Wurtzit-Kristallstruktur. Polare Kristallebenen mit fehlender Spiegelsymmetrie f{\"u}hren zu starken piezoelektrischen Feldern. Dies hat eine Lumineszenz mit ausgepr{\"a}gter linearer Polarisation zur Folge hat. Diese Eigenschaft wurde mittels statistischen Untersuchungen n{\"a}her betrachtet. Zus{\"a}tzlich erlaubten Messungen in Abh{\"a}ngigkeit der Anregungsleistung die verschiedenen Exziton-Zust{\"a}nde eines QP zu identifizieren. Zudem wurde die Emission einzelner Photonen durch InGaN QP demonstriert, erstmals sogar bis zu einer Temperatur von 50 K. Im abschliessenden Kapitel wird eine m{\"o}gliche Anwendung von QP pr{\"a}sentiert, bei der Eigenschaften in Bauteilen gezielt ausgenutzt werden, um die Bandbreite der Photonenabsorption zu erh{\"o}hen. Das Konzept der Zwischenband-Solarzellen verspricht auch Photonen mit einer Energie kleiner der Bandl{\"u}cke des umgebenden Materials aufnehmen zu k{\"o}nnen und somit den spektralen Absorptionsbereich zu erweitern. F{\"u}r eine systematische Untersuchung wurden verschiedene Proben mit integrierten AlGaInAs QP hergestellt. Anhand der Strom-Spannungs-Kennlinien der jeweiligen Proben im Dunkeln und unter Beleuchtung konnten wichtige Solarzellenparameter bestimmt werden. Spektrale Messungen liefern Informationen {\"u}ber die externe Quanteneffizienz der Proben. Entscheidend f{\"u}r den experimentellen Nachweis des Funktionsprinzips der Zwischenband-Solarzellen ist die Messung der Zwei-Photonen-Absorption f{\"u}r zwei Photonen mit jeweils kleineren Energien als der Bandl{\"u}cke des umgebenden Materials.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Foertig2013, author = {F{\"o}rtig, Alexander}, title = {Recombination Dynamics in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Neben herk{\"o}mmlichen, konventionellen anorganischen Solarzellen — haupts{\"a}chlich auf Silizium basierend — ist die Organische Photovoltaik (OPV) auf dem besten Wege in naher Zukunft eine kosteng{\"u}nstige, umweltfreundliche, komplement{\"a}re Technolgie darzustellen. Die Produktionskosten, die Lebenszeit der Solarzellen sowie deren Wirkungsgrad m{\"u}ssen dabei weiter optimiert werden, um einen Markteintritt der OPV zu erm{\"o}glichen. Die vorliegende Arbeit befasst sich mit der Effizienz organischer Solarzellen und deren Limitierung durch die Rekombination von Ladungstr{\"a}gern. Um funktionsf{\"a}hige Zellen zu untersuchen, werden zeitaufgel{\"o}ste Experimente wie die Messung der transienten Photospannung (TPV), des transienten Photostroms (TPC), die Ladungsextraktion (CE) sowie die time delayed collection field (TDCF) Methode angewandt. Untersucht werden sowohl fl{\"u}ssig prozessierte als auch aufgedampfte Proben, unterschiedliche Materialzusammensetzungen und verschiedene Probengeometrien. Das Standardmaterialsystem der OPV, P3HT:PC61BM, wird bei verschiedenen emperaturen und Beleuchtungsst{\"a}rken auf die Lebenszeit und Dichte der photogenerierten Ladungstr{\"a}ger {\"u}berpr{\"u}ft. F{\"u}r den Fall spannungsunabh{\"a}ngiger Generation von Ladungstr{\"a}gern zeigt sich die Anwendbarkeit der Shockley-Gleichung auf organische Solarzellen. Des Weiteren wird ein konsistentes Modell erl{\"a}utert, welches den Idealtit{\"a}tsfaktor direkt mit der Rekombination von freien mit gefangenen, exponentiell verteilten Ladungstr{\"a}gern verkn{\"u}pft. Ein Ansatz, bekannt unter der Bezeichung j=V Rekonstruktion, erm{\"o}glicht es, den leistungslimitierenden Verlustmechanismus in unbehandelten und thermisch geheizten P3HT:PC61BM Solarzellen zu identifizieren. Dieses Verf ahren, welches TPV, CE und TDCF Messungen beinhaltet, wird auf Proben basierend auf dem neuartigen, low-band gap Polymer PTB7 in Verbindung mit dem Fulleren PC71BM ausgeweitet. W{\"a}hrend in der Zelle hergestellt aus reinem Chlorbenzol betr{\"a}chtliche geminale wie nichtgeminale Verluste zu beobachten sind, erleichtert die Zugabe eines L{\"o}sungsmittelzusatzes die Polaronenpaartrennung, was zu einer starken Reduktion geminaler Verluste f{\"u}hrt. In einer Kooperation mit dem IMEC Institut in Leuven, werden abschließend die beiden bedeutensten Probenarchitekturen organischer Solarzellen, die planare und die Misch{\"u}bergang Struktur, jeweils basierend auf CuPC und C60, bez{\"u}glich nichtgeminaler Rekombination und Ladungstr{\"a}gerverteilung miteinander verglichen. Neben den beiden experimentellen Techniken um TPV und CE werden makroskopische Simulationen herangezogen, um den Ursprung unterschiedlichen Voc vs. Lichtintensit{\"a}t-Verhaltens zu erkl{\"a}ren.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Brueckner2017, author = {Br{\"u}ckner, Charlotte}, title = {The Electronic Structure and Optoelectronic Processes at the Interfaces in Organic Solar Cells Composed of Small Organic Molecules - A Computational Analysis of Molecular, Intermolecular, and Aggregate Aspects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate perspective. This thesis presents such a multiscale description to provide insight into the processes in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and charge separation are included. In order to establish structure-property relationships, a variety of different molecular p-type semiconductors are combined at the organic donor-acceptor heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the properties of the individual molecules, the intermolecular, and aggregate/device stage are subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are discussed to extend the microscopic understanding of the charge generation processes.}, subject = {Benchmark}, language = {en} } @phdthesis{Kiermasch2020, author = {Kiermasch, David}, title = {Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-20862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses.}, subject = {Solarzelle}, language = {en} }