@article{SpringTrendelenbrugScheeretal.1974, author = {Spring, Herbert and Trendelenbrug, Michael F. and Scheer, Ulrich and Franke, Werner W. and Herth, Werner}, title = {Structural and biochemical studies of the primary nucleus of two green algal species, Acetabularia mediterranea and Acetabularia major}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40600}, year = {1974}, abstract = {Primary (giant) nuclei of the green algae Acetabularia mediterranea and A. major were studied by light and electron microscopy using in situ fixed material as well as manually isolated nuclear components. In addition, cytochemical reactions of nuclear structures and biochemical determinations of nuclear and cytoplasmic RNA and of genome DNA content were performed. The data obtained and the structures observed are interpreted as demonstralions of transcriptional activities of different gene classes. The most prominent class is the nucleolar cistrons of precursors of ribosomal RNA which occur highly repeated in clusters in the form of regularly alternating intercepts on deoxyribonucleoprotein axes of transcribed rDNA, the fibril-covered matrix units, and the fibril-free "spacer" segments. A description and a classification of the various structural complexes which seem to represent transcriptional activities is given. Quantitative evaluations of these arrangements are presented. The morphology and the dimensions of such structures are compared with the RNA molecular weight determinations and with the corresponding data reported from various animal cell systems. It is suggested that the formation of the giant nucleus is correlated with, and probably due to, an enormous amplification of transcriptionally active rDNA and packing of the extrachromosomal copies into the large nucleolar aggregate bodies.}, subject = {Cytologie}, language = {en} } @article{FrankeScheerTrendelenburgetal.1976, author = {Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F. and Spring, Herbert and Zentgraf, Hanswalter}, title = {Absence of nucleosomes in transcriptionally active chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40646}, year = {1976}, abstract = {The ultrastructure of twO kinds of transcription ally active chromatin, the lampbrush chromosome loops and the nucleoli from amphibian oocytes and primary nuclei of the green alga Acetabularia, has been examined after manual isolation and dispersion in low salt media of slightly alkaline pH using various electron microscopic staining techniques (positive staining, metal shadowing, negative staining, preparation on positively charged films, etc.) and compared with the appearance of chromatin from various somatic cells (hen erythrocytes, rat hepatocytes, ClIltured murine sarcoma cells) prepared in parallel. While typical nucleosomes were revealed with all the techniques for chromatin from the latter three cell system, no nucleosomes were identified in either the lampbrush chromosome structures or the nucleolar chromatin. Nucleosomal arrays were absent not only in maximally fibril-covered matrix units but also in fibril-free regions between transcriptional complexes, including the apparent spacer intercepts between different transcriptional units. Moreover, comparisons of the length of the repeating units of rDNA in the transcribed state with those determined in the isolated rDNA and with the lengths of the first stable product of rDNA transcription, the pre-rRNA, demonstrated that the transcribed rDNA was not significantly shortened and/or condensed but rather extended in the transcriptional units. Distinct granules of about nucleosomal size which were sometimes found in apparent spacer regions as well as within matrix units of reduced fibril density were shown not to represent nucleosomes since their number per spacer unit was not inversely correlated with the length of the specific unit and also on the basis of their resistance to treatment with the detergent Sarkosyl NL-30. It is possible to structurally distinguish between transcriptionally active chromatin in which the DNA is extended in a non-nucleosomal form of chromatin and condensed, inactive chromatin within the typical nucleosomal package. The characteristic extended structure of transcriptionally active chromatin is found not only in the transcribed genes but also in non-transcribed regions within or between ("spacer") transcriptional units as well as in transcriptional units that are untranscribed amidst transcribed ones and/or have been inactivated for relatively short time. It is hypothesized that activation of transcription involves a transition from a nucleosomal to an extended chromatin organisation and that this structural transition is not specific for single "activated" genes but may involve larger chromatin regions, including adjacent untranscribed intercepts.}, subject = {Cytologie}, language = {en} } @phdthesis{Spohn1999, author = {Spohn, Gunther}, title = {The transcriptional control of virulence gene expression in Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {The Gram-negative, spiral-shaped, microaerophilic bacterium Helicobacter pylori is the causative agent of various disorders of the upper gastrointestinal tract, such as chronic superficial gastritis, chronic active gastritis, peptic ulceration and adenocarcinoma. Although many of the bacterial factors associated with disease development have been analysed in some detail in the recent years, very few studies have focused so far on the mechanisms that regulate expression of these factors at the molecular level. In an attempt to obtain an overview of the basic mechanisms of virulence gene expression in H. pylori, three important virulence factors of this pathogen, representative of different pathogenic mechanisms and different phases of the infectious process, are investigated in detail in the present thesis regarding their transcriptional regulation. As an essential factor for the early phase of infection, including the colonisation of the gastric mucosa, the flagella are analysed; the chaperones including the putative adhesion factors GroEL and DnaK are investigated as representatives of the phase of adherence to the gastric epithelium and persistence in the mucus layer; and finally the cytotoxin associated antigen CagA is analysed as representative of the cag pathogenicity island, which is supposed to account for the phenomena of chronic inflammation and tissue damage observed in the later phases of infection. RNA analyses and in vitro transcription demonstrate that a single promoter regulates expression of cagA, while two promoters are responsible for expression of the upstream divergently transcribed cagB gene. All three promoters are shown to be recognised by RNA polymerase containing the vegetative sigma factor sigma 80. Promoter deletion analyses establish that full activation of the cagA promoter requires sequences up to -70 and binding of the C-terminal portion of the alpha subunit of RNA polymerase to an UP-like element located between -40 and -60, while full activation of the major cagB promoter requires sequences upstream of -96 which overlap with the cagA promoter. These data suggest that the promoters of the pathogenicity island represent a class of minimum promoters, that ensure a basic level of transcription, while full activation requires regulatory elements or structural DNA binding proteins that provide a suitable DNA context. Regarding flagellar biosynthesis, a master transcriptional factor is identified that regulates expression of a series of flagellar basal body and hook genes in concert with the alternative sigma factor sigma 54. Evidence is provided that this regulator, designated FlgR (for flagellar regulatory protein), is necessary for motility and transcription of five promoters for seven basal body and hook genes. In addition, FlgR is shown to act as a repressor of transcription of the sigma 28-regulated promoter of the flaA gene, while changes in DNA topology are shown to affect transcription of the sigma 54-regulated flaB promoter. These data indicate that the regulatory network that governs flagellar gene expression in H. pylori shows similarities to the systems of both Salmonella spp. and Caulobacter crescentus. In contrast to the flagellar genes which are regulated by three different sigma factors, the three operons encoding the major chaperones of H. pylori are shown to be transcribed by RNA polymerase containing the vegetative sigma factor sigma 80. Expression of these operons is shown to be regulated negatively by the transcriptional repressor HspR, a homologue of a repressor protein of Streptomyces spp., known to be involved in negative regulation of heat shock genes. In vitro studies with purified recombinant HspR establish that the protein represses transcription by binding to large DNA regions centered around the transcription initiation site in the case of one promoter, and around -85 and -120 in the case of the the other two promoters. In contrast to the situation in Streptomyces, where transcription of HspR-regulated genes is induced in response to heat shock, transcription of the HspR-dependent genes in H. pylori is not inducible with thermal stimuli. Transcription of two of the three chaperone encoding operons is induced by osmotic shock, while transcription of the third operon, although HspR-dependent, is not affected by salt treatment. Taken together, the analyses carried out indicate that H. pylori has reduced its repertoire of specific regulatory proteins to a basic level that may ensure coordinate regulation of those factors that are necessary during the initial phase of infection including the passage through the gastric lumen and the colonisation of the gastric mucosa. The importance of DNA topology and/or context for transcription of many virulence gene promoters may on the other hand indicate, that a sophisticated global regulatory network is present in H. pylori, which influences transcription of specific subsets of virulence genes in response to changes in the microenvironment.}, subject = {Helicobacter-pylori-Infektion}, language = {en} } @phdthesis{Schmit2008, author = {Schmit, Fabienne}, title = {LINC, a novel protein complex involved in the regulation of G2/M genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29336}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Regulated progression through the cell cycle is essential for ordered cell proliferation. One of the best characterized tumor suppressors is the retinoblastoma protein pRB, which together with the E2F transcription factors regulates cell cycle progression. In the model organisms Drosophila melanogaster and Caenorhabditis elegans, RB/E2F containing multiprotein complexes have been described as transcriptional regulators of gene expression. This work first describes a homologous complex in human cells named LINC (for LIN complex). It consists of a stable core complex containing LIN-9, LIN-37, LIN-52, LIN-54 and RbAp48. This core complex interacts cell cycle-dependently with different pocket proteins and transcription factors. In quiescent cells, LINC associates with p130 and E2F4. In S-phase cells these interactions are lost and LINC binds to B-MYB and p107. The transient knock-down of LIN-54 in primary fibroblasts, as the depletion of LIN-9, leads to cell cycle defects. The cells are delayed before the entry into mitosis. This effect is due to the fact that the knock-down of LINC components leads to the downregulation of cell cycle genes responsible for the entry into and exit from mitosis as well as for checkpoints during mitosis. These LINC target genes are known E2F G2/M target genes, which are expressed later than the classical G1/S E2F target genes. The transcriptional regulation by LINC is a direct effect as LINC binds to the promoters of its target genes throughout the cell cycle. LINC contains three DNA-binding proteins. E2F4 and B-MYB, which cell cycle-dependently bind to LINC, are known DNA-binding transcription factors. Additionally, it is show here that the LINC core complex member LIN-54 also directly binds to the promoter of a LINC target gene. Although the exact molecular mechanism of LINC function needs to be analyzed further, data in this work provide a model for the delayed activation of G2/M target genes. B-MYB, a G1/S E2F target gene, binds to LINC upon its expression in S-phase. Then only LINC is a transcriptional activator that induces the expression of the G2/M genes. This provides an explanation for the delayed expression of these E2F G2/M target genes.}, subject = {Zellzyklus}, language = {en} } @article{GassenBrechtefeldSchandryetal.2012, author = {Gassen, Alwine and Brechtefeld, Doris and Schandry, Niklas and Arteaga-Salas, J. Manuel and Israel, Lars and Imhof, Axel and Janzen, Christian J.}, title = {DOT1A-dependent H3K76 methylation is required for replication regulation in Trypanosoma brucei}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {20}, doi = {10.1093/nar/gks801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131449}, pages = {10302 - 10311}, year = {2012}, abstract = {Cell-cycle progression requires careful regulation to ensure accurate propagation of genetic material to the daughter cells. Although many cell-cycle regulators are evolutionarily conserved in the protozoan parasite Trypanosoma brucei, novel regulatory mechanisms seem to have evolved. Here, we analyse the function of the histone methyltransferase DOT1A during cell-cycle progression. Over-expression of DOT1A generates a population of cells with aneuploid nuclei as well as enucleated cells. Detailed analysis shows that DOT1A over-expression causes continuous replication of the nuclear DNA. In contrast, depletion of DOT1A by RNAi abolishes replication but does not prevent karyokinesis. As histone H3K76 methylation has never been associated with replication control in eukaryotes before, we have discovered a novel function of DOT1 enzymes, which might not be unique to trypanosomes.}, language = {en} } @article{NaseemDandekar2012, author = {Naseem, Muhammad and Dandekar, Thomas}, title = {The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions}, series = {PLOS Pathogens}, volume = {8}, journal = {PLOS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1003026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131901}, pages = {e1003026}, year = {2012}, abstract = {No abstract available.}, language = {en} } @article{MaudetSourisceDraginetal.2013, author = {Maudet, Claire and Sourisce, Ad{\`e}le and Dragin, Lo{\"i}c and Lahouassa, Hichem and Rain, Jean-Christopher and Bouaziz, Serge and Ramirez, Bertha C{\´e}cilia and Margottin-Goguet, Florence}, title = {HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0077320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128316}, pages = {e77320}, year = {2013}, abstract = {The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.}, language = {en} } @article{GroenewegvanRoyenFenzetal.2014, author = {Groeneweg, Femke L. and van Royen, Martin E. and Fenz, Susanne and Keizer, Veer I. P. and Geverts, Bart and Prins, Jurrien and de Kloet, E. Ron and Houtsmuller, Adriaan B. and Schmidt, Thomas S. and Schaaf, Marcel J. M.}, title = {Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0090532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117085}, pages = {e90532}, year = {2014}, abstract = {Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (similar to 0.7 s) and the other half for longer time periods (similar to 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (<= 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.}, language = {en} } @article{SerflingRudolfBuschetal.2014, author = {Serfling, Edgar and Rudolf, Ronald and Busch, Rhoda and Patra, Amiya K. and Muhammad, Khalid and Avots, Andris and Andrau, Jean-Christophe and Klein-Hessling, Stefan}, title = {Architecture and expression of the Nfatc1 gene in lymphocytes}, doi = {10.3389/fimmu.2014.00021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112718}, year = {2014}, abstract = {In lymphocytes, the three NFAT factors NFATc1 (also designated as NFAT2), NFATc2 (NFAT1), and NFATc3 (NFAT4 or NFATx) are expressed and are the targets of immune receptor signals, which lead to a rapid rise of intracellular Ca++, the activation of phosphatase calcineurin, and to the activation of cytosolic NFATc proteins. In addition to rapid activation of NFAT factors, immune receptor signals lead to accumulation of the short NFATc1/αA isoform in lymphocytes which controls their proliferation and survival. In this mini-review, we summarize our current knowledge on the structure and transcription of the Nfatc1 gene in lymphocytes, which is controlled by two promoters, two poly A addition sites and a remote downstream enhancer. The Nfatc1 gene resembles numerous primary response genes (PRGs) induced by LPS in macrophages. Similar to the PRG promoters, the Nfatc1 promoter region is organized in CpG islands, forms DNase I hypersensitive sites, and is marked by histone tail modifications before induction. By studying gene induction in lymphocytes in detail, it will be important to elucidate whether the properties of the Nfatc1 induction are not only typical for the Nfatc1 gene but also for other transcription factor genes expressed in lymphocytes.}, language = {en} } @article{ElkonLoayzaPuchKorkmazetal.2015, author = {Elkon, Ran and Loayza-Puch, Fabricio and Korkmaz, Gozde and Lopes, Rui and van Breugel, Pieter C and Bleijerveld, Onno B and Altelaar, AF Maarten and Wolf, Elmar and Lorenzin, Francesca and Eilers, Martin and Agami, Reuven}, title = {Myc coordinates transcription and translation to enhance transformation and suppress invasiveness}, series = {EMBO reports}, volume = {16}, journal = {EMBO reports}, number = {12}, doi = {10.15252/embr.201540717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150373}, pages = {1723-1736}, year = {2015}, abstract = {c-Myc is one of the major human proto-oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc-induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript-specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc-induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells.}, language = {en} } @article{DembekBarquistBoinettetal.2015, author = {Dembek, Marcin and Barquist, Lars and Boinett, Christine J. and Cain, Amy K. and Mayho, Matthew and Lawley, Trevor D. and Fairweather, Neil F. and Fagan, Robert P.}, title = {High-throughput analysis of gene essentiality and sporulation in Clostridium difficile}, series = {mBio}, volume = {6}, journal = {mBio}, number = {2}, doi = {10.1128/mBio.02383-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143745}, pages = {e02383-14}, year = {2015}, abstract = {Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} } @article{HennigDjakovicDoelkenetal.2021, author = {Hennig, Thomas and Djakovic, Lara and D{\"o}lken, Lars and Whisnant, Adam W.}, title = {A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery}, series = {Viruses}, volume = {13}, journal = {Viruses}, number = {9}, issn = {1999-4915}, doi = {10.3390/v13091836}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246165}, year = {2021}, abstract = {During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.}, language = {en} } @article{WenckerMarincolaSchoenfelderetal.2021, author = {Wencker, Freya D. R and Marincola, Gabriella and Schoenfelder, Sonja M. K. and Maaß, Sandra and Becher, D{\"o}rte and Ziebuhr, Wilma}, title = {Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {4}, doi = {10.1093/nar/gkaa1277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259029}, pages = {2192-2212}, year = {2021}, abstract = {In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.}, language = {en} } @phdthesis{FetivaMora2023, author = {Fetiva Mora, Maria Camila}, title = {Changes in chromatin accessibility by oncogenic YAP and its relevance for regulation of cell cycle gene expression and cell migration}, doi = {10.25972/OPUS-30291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Various types of cancer involve aberrant cell cycle regulation. Among the pathways responsible for tumor growth, the YAP oncogene, a key downstream effector of the Hippo pathway, is responsible for oncogenic processes including cell proliferation, and metastasis by controlling the expression of cell cycle genes. In turn, the MMB multiprotein complex (which is formed when B-MYB binds to the MuvB core) is a master regulator of mitotic gene expression, which has also been associated with cancer. Previously, our laboratory identified a novel crosstalk between the MMB-complex and YAP. By binding to enhancers of MMB target genes and promoting B-MYB binding to promoters, YAP and MMB co-regulate a set of mitotic and cytokinetic target genes which promote cell proliferation. This doctoral thesis addresses the mechanisms of YAP and MMB mediated transcription, and it characterizes the role of YAP regulated enhancers in transcription of cell cycle genes. The results reported in this thesis indicate that expression of constitutively active, oncogenic YAP5SA leads to widespread changes in chromatin accessibility in untransformed human MCF10A cells. ATAC-seq identified that newly accessible and active regions include YAP-bound enhancers, while the MMB-bound promoters were found to be already accessible and remain open during YAP induction. By means of CRISPR-interference (CRISPRi) and chromatin immuniprecipitation (ChIP), we identified a role of YAP-bound enhancers in recruitment of CDK7 to MMB-regulated promoters and in RNA Pol II driven transcriptional initiation and elongation of G2/M genes. Moreover, by interfering with the YAP-B-MYB protein interaction, we can show that binding of YAP to B-MYB is also critical for the initiation of transcription at MMB-regulated genes. Unexpectedly, overexpression of YAP5SA also leads to less accessible chromatin regions or chromatin closing. Motif analysis revealed that the newly closed regions contain binding motifs for the p53 family of transcription factors. Interestingly, chromatin closing by YAP is linked to the reduced expression and loss of chromatin-binding of the p53 family member Np63. Furthermore, I demonstrate that downregulation of Np63 following expression of YAP is a key step in driving cellular migration. Together, the findings of this thesis provide insights into the role of YAP in the chromatin changes that contribute to the oncogenic activities of YAP. The overexpression of YAP5SA not only leads to the opening of chromatin at YAP-bound enhancers which together with the MMB complex stimulate the expression of G2/M genes, but also promotes the closing of chromatin at ∆Np63 -bound regions in order to lead to cell migration.}, subject = {Chromatin}, language = {en} } @article{DjakovicHennigReinischetal.2023, author = {Djakovic, Lara and Hennig, Thomas and Reinisch, Katharina and Milić, Andrea and Whisnant, Adam W. and Wolf, Katharina and Weiß, Elena and Haas, Tobias and Grothey, Arnhild and J{\"u}rges, Christopher S. and Kluge, Michael and Wolf, Elmar and Erhard, Florian and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-40217-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358161}, year = {2023}, abstract = {Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.}, language = {en} }